1. Altman J.D., Moss P.A.H., Goulder P.J.R., et al. Phenotypic analysis of antigen-specific T lymphocytes. Science 1996;274(5284): 94-6.

2. Nepom G.T., Buckner J.H., Novak E.J., et al., HLA class II tetramers: tools for direct analysis of antigen-specific CD4+ T cells. Arthritis Rheum 2002;46(1):5-12.

3. Mallet-Designe V.I., Stratmann T., Homann D., Carbone F., Oldstone M.B., Teyton L. Detection of low-avidity CD4+ T cells using recombinant artificial APC: following the antiovalbumin immune response. J Immunol 2003;170(1):123-31.

4. Kwok W.W., Liu A.W., Novak E.J., et al. HLA-DQ tetramers identify epitope-specific T cells in peripheral blood of herpes simplex virus type 2-infected individuals: direct detection of immunodominant antigen-responsive cells. J Immunol 2000;164(8):4244-9.

5. Meyer A.L., Trollmo C., Crawford F., et al. Direct enumeration of Borrelia-reactive CD4 T cells ex vivo by using MHC class II tetramers. Proc Natl Acad Sci U S A 2000;97(21): 11433-8.

6. Davis S.J., Ikemizu S., Evans E.J., Fugger L., Bakker T.R., van der Merwe P.A., The nature of molecular recognition by T cells. Nat Immunol 2003;4(3): 217-24.

7. Schneck J.P., Monitoring antigen-specific T cells using MHC-Ig dimers. Immunol Invest 2000;29(2):163-9.

8. Dunbar P.R., Ogg G.S., Chen J., Rust N., van der Bruggen P., Cerundolo V. Direct isolation, phenotyping and cloning of low-frequency antigen-specific cytotoxic T lymphocytes from peripheral blood. Curr Biol 1998;8(7):413-6.

9. Clay T.M., Hobeika A.C., Mosca P.J., Lyerly H.K., Morse M.A. Assays for monitoring cellular immune responses to active immunotherapy of cancer. Clin Cancer Res 2001;7(5):1127-35.

10. Gajewski T.F. Monitoring specific T-cell responses to melanoma vaccines: ELISPOT, tetramers, and beyond. Clin Diagn Lab Immunol 2000;7(2): 141-4.

11. Whiteside T.L., Zhao Y., Tsukishiro T., Elder E.M., Gooding W., Baar J. Enzyme-linked immunospot, cytokine flow cytometry, and tetramers in the detection of T-cell responses to a dendritic cell-based multipeptide vaccine in patients with melanoma. Clin Cancer Res 2003; 9(2):641-9.

12. Lee P.P., Yee C., Savage P.A., et al. Characterization of circulating T cells specific for tumor-associated antigens in melanoma patients. Nature Medicine 1999; 5(6):677-85.

13. Molldrem J.J., Lee P.P., Wang C., Champlin R.E., Davis M.M. A PR1-human leukocyte antigen-A2 tetramer can be used to isolate low-frequency cytotoxic T

lymphocytes from healthy donors that selectively lyse chronic myelogenous leukemia Cancer Research 1999;59( 11):2675-81.

14. He X.S., Rehermann B., Lopez-Labrador F.X., et al. Quantitative analysis of hepatitis C virus-specific CD8+ T cells in peripheral blood and liver using peptide-MHC tetramers. Proceedings of the National Academy of Sciences of the United States of America, 1999;96(10):5692-7.

15. Saito T., Dworacki G., Gooding W., Lotze M.T., Whiteside T.L. Spontaneous apoptosis of CD8+ T lymphocytes in peripheral blood of patients with advanced melanoma. Clin Cancer Res 2000;6(4):1351-64.

16. Whelan J.A., Dunbar P.R., Price D.A., et al. Specificity of CTL interactions with peptide-MHC class I tetrameric complexes is temperature dependent. J Immunol 1999; 163(8):4342-8.

17. Salter R.D., Benjamin R.J., Wesley P.K., et al. A binding site for the T-cell co-receptor CD8 on the alpha 3 domain of HLA-A2. Nature, 1990;345(6270):41-6.

18. Daniels M.A., Jameson S.C., Critical role for CD8 in T cell receptor binding and activation by peptide/major histocompatibility complex multimers. J Exp Med 2000;191(2):335-46.

19. Hoffmann T.K., Donnenberg V.S., Friebe-Hoffmann U., et al. Competition of peptide-MHC class I tetrameric complexes with anti-CD3 provides evidence for specificity of peptide binding to the TCR complex. Cytometry 2000;41(4):321-8.

20. Denkberg G., Cohen C.J., Reiter Y. Critical role for CD8 in binding of MHC tetramers to TCR: CD8 antibodies block specific binding of human tumor-specific MHC-peptide tetramers to TCR. J Immunol 2001;167(1):270-6.

21. Fong L., Hou Y., Rivas A., et al. Altered peptide ligand vaccination with Flt3 ligand expanded dendritic cells for tumor immunotherapy. Proc Natl Acad Sci U S A 2001;98(15):8809-14.

22. Dietrich P. Y., Walker P. R., Quiquerez A.L., et al. Melanoma patients respond to a cytotoxic T lymphocyte-defined self-peptide with diverse and nonoverlapping T-cell receptor repertoires. Cancer Res 2001;61(5):2047-54.

23. Pittet M.J., Speiser D.E., Valmori D., et al. Ex vivo analysis of tumor antigen specific CD8+ T cell responses using MHC/peptide tetramers in cancer patients. Int Immunopharmacol 2001;1(7):1235-47.

24. Yee C., Thompson J. A., Byrd D., et al. Adoptive T cell therapy using antigen-specific CD8+ T cell clones for the treatment of patients with metastatic melanoma: in vivo persistence, migration, and antitumor effect of transferred T cells. Proc Natl Acad Sci U S A 2002;99(25):16168-73.

25. Xu T, Shu CT, Purdom E., et al. Microarray analysis reveals differences in gene expression of circulating CD8(+) T cells in melanoma patients and healthy donors. Cancer Res 2004; 64(10):3661-7.

26. Rubio V., Stuge T.B., Singh N., et al. Ex vivo identification, isolation and analysis of tumor-cytolytic T cells. Nat Med 2003;9(11):1377-82.

27. Molldrem J.J., Lee P.P., Kant S., et al. Chronic myelogenous leukemia shapes host immunity by selective deletion of high-avidity leukemia-specific T cells. J Clin Invest 2003;111(5):639-47.

28. Oh S., Hodge J. W., Ahlers J. D., Burke D. S., Schlom J., Berzofsky J. A. Selective induction of high avidity CTL by altering the balance of signals from APC. J Immunol 2003;170(5):2523-30.

29. Dutoit V., Guillaume P., Cerottini J.C., Romero P., Valmori D. Dissecting TCR-MHC/peptide complex interactions with A2/peptide multimers incorporating tumor antigen peptide variants: crucial role of interaction kinetics on functional outcomes. Eur J Immunol 2002; 32(ll):3285-93.

30. Echchakir H., Dorothee G., Vergnon I., Menez J., Chouaib S., Mami-Chouaib F. Cytotoxic T lymphocytes directed against a tumor-specific mutated antigen display similar HLA tetramer binding but distinct functional avidity and tissue distribution. Proc Natl Acad Sci U S A 2002;99(14):9358-63.

31. O'Connor D.H., Allen T.M., Vogel T.U., et al. Acute phase cytotoxic T lymphocyte escape is a hallmark of simian immunodeficiency virus infection. Nat Med 2002;8(5):493-9.

32. Cawthon A.G., Alexander-Miller M.A. Optimal colocalization of TCR and CD8 as a novel mechanism for the control of functional avidity. J Immunol 2002;169(7):3492-8.

33. Slifka M.K. and Whitton J.L. Functional avidity maturation of CD8(+) T cells without selection of higher affinity TCR Nat Immunol 2001;2(8):711-7.

34. Margulies D.H. TCR avidity: it's not how strong you make it, it's how you make it strong. Nat Immunol 2001;2(8):669-70.

35. Yee C., Savage P.A., Lee P.P., Davis M.M., Greenberg P.D., Isolation of high avidity melanoma-reactive CTL from heterogeneous populations using peptide-MHC tetramers. Journal of Immunology 1999;162(4):2227-34.

36. Crawford F., Kozono H., White J., Marrack P., Kappler J. Detection of antigen-specific T cells with multivalent soluble class II MHC covalent peptide complexes. Immunity 1998;8(6):675-82.

37. Derby M., Alexander-Miller M., Tse R., Berzofsky J. High-avidity CTL exploit two complementary mechanisms to provide better protection against viral infection than low-avidity CTL. J Immunol 2001; 166(3):1690-7.

38. Dutoit V., Rubio-Godoy V., Doucey M.A., et al. Functional avidity of tumor antigen-specific CTL recognition directly correlates with the stability of MHC/peptide multimer binding to TCR J Immunol 2002;168(3):1167-71.

39. Savage P.A., Boniface J.J., Davis M.M. A kinetic basis for T cell receptor repertoire selection during an immune response. Immunity, 1999;10(4):485-92.

40. Betts M.R., Brenchley J.M., Price D.A., et al. Sensitive and viable identification of antigen-specific CD8+ T cells by a flow cytometric assay for degranulation. J Immunol Methods 2003;281(1-2):65-78.

41. Skinner P.J., Daniels M.A., Schmidt C.S., Jameson S.C., Haase A.T. Cutting edge: In situ tetramer staining of antigen-specific T cells in tissues. J Immunol 2000;165(2):613-7.

42. Schrama D., Pedersen L.O., Keikavoussi P., et al. Aggregation of antigen-specific T cells at the inoculation site of mature dendritic cells. J Invest Dermatol 2002;119(6):1443-8.

43. Derby M.A., Wang J., Margulies D.H., Berzofsky J.A. Two intermediate-avidity cytotoxic T lymphocyte clones with a disparity between functional avidity and MHC tetramer staining. Int Immunol 2001;13(6):817-24.

44. He X.S., Rehermann B., Boisvert J., et al. Direct functional analysis of epitope-specific CD8+ T cells in peripheral blood. Viral Immunol 2001;14(1):59-69.

45. Lee K.H., Wang E., Nielsen M.B., et al. Increased vaccine-specific T cell frequency after peptide-based vaccination correlates with increased susceptibility to in vitro stimulation but does not lead to tumor regression. Journal of Immunology 1999;163(11):6292-300.

46. Lee P., Wang F., Kuniyoshi J., et al. Effects of interleukin-12 on the immune response to a multipeptide vaccine for resected metastatic melanoma. J Clin Oncol 2001;19(18):3836-47.

How To Bolster Your Immune System

How To Bolster Your Immune System

All Natural Immune Boosters Proven To Fight Infection, Disease And More. Discover A Natural, Safe Effective Way To Boost Your Immune System Using Ingredients From Your Kitchen Cupboard. The only common sense, no holds barred guide to hit the market today no gimmicks, no pills, just old fashioned common sense remedies to cure colds, influenza, viral infections and more.

Get My Free Audio Book

Post a comment