Cure Arthritis Naturally

Cure Arthritis Naturally

Get Instant Access

[1] Oeppen RS, Connolly SA, Bencardino JT, et al. Acute injury of the articular cartilage and subchondral bone: a common but unrecognized lesion in the immature knee. AJR Am J Roentgenol 2004;182:111-7.

[2] Major NM, Helms CA. MR imaging of the knee: findings in asymptomatic collegiate basketball players. AJR AmJ Roentgenol 2002;179:641-4.

[3] Loomer R, Fisher C, Lloyd-Smith R, etal. Osteochondral lesions of the talus. AmJ Sports Med 1993;21:13-9.

[4] Anderson IF, Crichton KJ, Grattan-Smith T, etal. Osteochondral fractures of the dome of the talus. J Bone Joint Surg Am 1989;71:1143-52.

[5] Wright RW, Boyce RH, Michener T, et al. Radiographs are not useful in detecting arthro-scopically confirmed mild chondral damage. Clin Orthop Relat Res 2006;442:245-51.

[6] Loredo R, Sanders TG. Imaging of osteochondral injuries. Clin Sports Med 2001;20: 249-78.

[7] Schachter AK, Chen AL, Reddy PD, et al. Osteochondral lesions of the talus. J Am Acad Orthop Surg 2005;13:152-8.

[8] Vaz CE, Camargo OP, Santana PJ, et al. Accuracy of magnetic resonance in identifying traumatic intraarticular knee lesions. Clinics 2005;60:445-50.

[9] Riel KA, Reinisch M, Kersting-Sommerhoff B, etal. 0.2-Tesla magnetic resonance imaging of internal lesions of the knee joint: a prospective arthroscopically controlled clinical study. Knee Surg Sports Traumatol Arthrosc 1999;7:37-41.

[10] YoonYS, RahJH, Park HJ. Aprospective study of the accuracy of clinical examination evaluated by arthroscopy of the knee. Int Orthop 1997;21:223-7.

[11] Mosher TJ, Dardzinski BJ. Cartilage MRI T2 relaxation time mapping: overview and applications. Semin Musculoskelet Radiol 2004;8:355-68.

[12] Burstein D, Gray M. New MRI techniques for imaging cartilage. J Bone Joint Surg Am 2003;85-A(Suppl 2):70-7.

[13] Potter HG, Foo LF. Magnetic resonance imaging of articular cartilage: trauma, degeneration, and repair. Am J Sports Med 2006;34(4):661-77.

[14] Lang P, Noorbakhsh F, Yoshioka H. MR imaging of articular cartilage: current state and recent developments. Radiol Clin North Am 2005;43:629-39 [vii.].

[15] LinkTM, Majumdar S, Peterfy C, et al. High resolution MRI of small joints: impact of spatial resolution on diagnostic performance and SNR. Magn Reson Imaging 1998;16: 147-55.

[16] Eckstein F, Glaser C. Measuring cartilage morphology with quantitative magnetic resonance imaging. Semin Musculoskelet Radiol 2004;8:329-53.

[17] Mosher TJ, PruettSW. Magnetic resonance imaging of superficial cartilage lesions: role of contrast in lesion detection. J Magn Reson Imaging 1999;10:178-82.

[18] Heron CW, Calvert PT. Three-dimensional gradient-echo MR imaging of the knee: comparison with arthroscopy in 100 patients. Radiology 1992;183:839-44.

[19] Hodler J, Berthiaume MJ, Schweitzer ME, et al. Knee joint hyaline cartilage defects: a comparative study of MR and anatomic sections. J Comput Assist Tomogr 1992;16: 597-603.

[20] Disler DG, McCauleyTR, Wirth CR, etal. Detection of knee hyaline cartilage defects using fat-suppressed three-dimensional spoiled gradient-echo MR imaging: comparison with standard MR imaging and correlation with arthroscopy. AJR Am J Roentgenol 1995;165: 377-82.

[21] Murphy BJ. Evaluation of grades 3 and 4 chondromalacia of the knee using T2*-weighted 3D gradient-echo articular cartilage imaging. Skeletal Radiol 2001;30: 305-11.

[22] Lee KY, Masi JN, Sell CA, et al. Computer-aided quantification of focal cartilage lesions using MRI: Accuracy and initial arthroscopic comparison. Osteoarthritis Cartilage 2005;13(8):728-37.

[23] McGibbon CA, Trahan CA. Measurement accuracy of focal cartilage defects from MRI and correlation of MRI graded lesions with histology: a preliminary study. Osteoarthritis Cartilage 2003;11:483-93.

[24] Graichen H, Al-Shamari D, Hinterwimmer S, etal. Accuracy of quantitative magnetic resonance imaging in the detection of ex vivo focal cartilage defects. Ann Rheum Dis 2005;64:1120-5.

[25] Tan TC, Wilcox DM, Frank L, et al. MR imaging of articular cartilage in the ankle: comparison of available imaging sequences and methods of measurement in cadavers. Skeletal Radiol 1996;25:749-55.

[26] El-Khoury GY, Alliman KJ, Lundberg HJ, etal. Cartilage thickness in cadaveric ankles: measurement with double-contrast multi-detector row CTarthrography versus MR imaging. Radiology 2004;233:768-73.

[27] Schmid MR, Pfirrmann CW, Hodler J, et al. Cartilage lesions in the ankle joint: comparison of MR arthrography and CTarthrography. Skeletal Radiol 2003;32:259-65.

[28] Verhagen RA, Maas M, Dijkgraaf MG, et al. Prospective study on diagnostic strategies in osteochondral lesions of the talus. Is MRI superior to helical CT? J Bone Joint Surg Br 2005;87:41-6.

[29] Potter HG, LinklaterJM, Allen AA, etal. Magnetic resonance imaging of articular cartilage in the knee. An evaluation with use of fast-spin-echo imaging. J Bone Joint Surg Am 1998;80:1276-84.

[30] Bredella MA, Tirman PF, Peterfy CG, et al. Accuracy of T2-weighted fast spin-echo MR imaging with fat saturation in detecting cartilage defects in the knee: comparison with arthroscopy in 130 patients. AJR Am J Roentgenol 1999;172:1073-80.

[31] Kijowski R, Stanton P, Fine J, et al. Subchondral bone marrow edema in patients with degeneration of the articular cartilage of the knee joint. Radiology 2006;238(3):943-9.

[32] Yoshioka H, Stevens K, Hargreaves BA, etal. Magnetic resonance imaging of articular cartilage of the knee: comparison between fat-suppressed three-dimensional SPGR imaging, fat-suppressed FSE imaging, and fat-suppressed three-dimensional DEFT imaging, and correlation with arthroscopy. J Magn Reson Imaging 2004;20:857-64.

[33] Hargreaves BA, Gold GE, Beaulieu CF, et al. Comparison of new sequences for high-resolution cartilage imaging. Magn Reson Med 2003;49:700-9.

[34] GoldGE, Fuller SE, Hargreaves BA, etal. Driven equilibrium magnetic resonance imaging of articular cartilage: initial clinical experience. J Magn Reson Imaging 2005;21:476-81.

[35] Kornaat PR, DoornbosJ, van der Molen AJ, etal. Magnetic resonance imaging of knee cartilage using a water selective balanced steady-state free precession sequence. J Magn Reson Imaging 2004;20:850-6.

[36] Weckbach S, MendlikT, Horger W, etal. Quantitative assessment of patellar cartilage volume and thickness at 3.0 Tesla comparing a 3D-fast low angle shot versus a 3D-true fast imaging with steady-state precession sequence for reproducibility. Invest Radiol 2006; 41:189-97.

[37] Schmid MR, Pfirrmann CW, Koch P, etal. Imaging of patellar cartilage with a 2D multiple-echo data image combination sequence. AJR Am J Roentgenol 2005;184:1744-8.

[38] Rubenstein JD, LiJG, MajumdarS, etal. Image resolution and signal-to-noise ratio requirements for MR imaging of degenerative cartilage. AJR Am J Roentgenol 1997;169: 1089-96.

[39] Rutt BK, Lee DH. The impact of field strength on image quality in MRI. J Magn Reson Imaging 1996;6:57-62.

[40] Virolainen H, Visuri T, Kuusela T. Acute dislocation of the patella: MR findings. Radiology 1993;189:243-6.

[41] Kladny B, Gluckert K, Swoboda B, etal. Comparison of low-field (0.2 Tesla) and high-field (1.5 Tesla) magnetic resonance imaging of the knee joint. Arch Orthop Trauma Surg 1995;114:281-6.

[42] Woertler K, Strothmann M, Tombach B, etal. Detection of articular cartilage lesions: experimental evaluation of low- and high-field-strength MR imaging at 0.18 and 1.0 T. J Magn Reson Imaging 2000;11:678-85.

[43] Harman M, Ipeksoy U, Dogan A, et al. MR arthrography in chondromalacia patellae diagnosis on a low-field open magnet system. Clin Imaging 2003;27:194-9.

[44] AhnJM, KwakSM, Kang HS, etal. Evaluation of patellar cartilage in cadavers with a low-field-strength extremity-only magnet: comparison of MR imaging sequences, with macroscopic findings as the standard. Radiology 1998;208:57-62.

[45] Fischbach F, Bruhn H, Unterhauser F, et al. Magnetic resonance imaging of hyaline cartilage defects at 1.5Tand 3.0T: comparison of medium T2-weighted fast spin echo, T1-weighted two-dimensional and three-dimensional gradient echo pulse sequences. Acta Ra-diol 2005;46:67-73.

[46] Link TM, Sell CA, Masi JN, et al. 3.0 vs 1.5T MRI in the detection of focal cartilage pathology—ROC analysis in an experimental model. Osteoarthritis Cartilage 2006;14: 63-70.

[47] Kornaat PR, Reeder SB, Koo S, et al. MR imaging of articular cartilage at 1.5Tand 3.0T: comparison of SPGR and SSFP sequences. Osteoarthritis Cartilage 2005;13:338-44.

[48] Schibany N, Ba-Ssalamah A, Marlovits S, et al. Impact of high field (3.0 T) magnetic resonance imaging on diagnosis of osteochondral defects in the ankle joint. Eur J Radiol 2005;55:283-8.

[49] Eckstein F, Charles HC, Buck RJ, et al. Accuracy and precision of quantitative assessment of cartilage morphology by magnetic resonance imaging at 3.0T. Arthritis Rheum 2005;52: 3132-6.

[50] Schroder RJ, Fischbach F, Unterhauser FN, etal. Value of various MR sequences using 1.5 and 3.0 Tesla in analyzing cartilaginous defects of the patella in an animal model. Rofo 2004;176:1667-75.

[51] Wluka AE, Ding C, Jones G, et al. The clinical correlates of articular cartilage defects in symptomatic knee osteoarthritis: a prospective study. Rheumatology (Oxford) 2005;44: 1311-6.

[52] Larsen E, Jensen PK, Jensen PR. Long-term outcome of knee and ankle injuries in elite football. ScandJ Med Sci Sports 1999;9:285-9.

[53] Outerbridge RE. Osteochondritis dissecans of the posterior femoral condyle. Clin Orthop Relat Res 1983;121-9.

[54] Bohndorf K. Osteochondritis (osteochondrosis) dissecans: a review and new MRI classification. Eur Radiol 1998;8:103-12.

[55] Mintz DN, Tashjian GS, Connell DA, etal. Osteochondral lesions of the talus: a new magnetic resonance grading system with arthroscopic correlation. Arthroscopy 2003;19: 353-9.

[56] Modl JM, Sether LA, Haughton VM, et al. Articular cartilage: correlation of histologic zones with signal intensity at MR imaging. Radiology 1991;181:853-5.

[57] Goodwin DW, Wadghiri YZ, Zhu H, et al. Macroscopic structure of articular cartilage of the tibial plateau: influence of a characteristic matrix architecture on MRI appearance. AJR Am J Roentgenol 2004;182:311-8.

[58] Chung T, Jaramillo D. Normal maturing distal tibia and fibula: changes with age at MR imaging. Radiology 1995;194:227-32.

[59] Yoshioka H, Stevens K, Genovese M, et al. Articular cartilage of knee: normal patterns at MR imaging that mimic disease in healthy subjects and patients with osteoarthritis. Radiology 2004;231:31-8.

[60] Xia Y, FarquharT, Burton-Wurster N, et al. Origin of cartilage laminae in MRI. J Magn Re-son Imaging 1997;7:887-94.

[61] Xia Y. Magic-angle effect in magnetic resonance imaging of articular cartilage: a review. Invest Radiol 2000;35:602-21.

[62] Jeffery AK, Blunn GW, Archer CW, et al. Three-dimensional collagen architecture in bovine articular cartilage. J Bone Joint Surg Br 1991;73:795-801.

[63] Foster JE, Maciewicz RA, Taberner J, et al. Structural periodicity in human articular cartilage: comparison between magnetic resonance imaging and histological findings. Osteoarthritis Cartilage 1999;7:480-5.

[64] Goodwin DW, Dunn JF. High-resolution magnetic resonance imaging of articular cartilage: correlation with histology and pathology. Top Magn Reson Imaging 1998;9: 337-47.

[65] Goodwin DW, Zhu H, Dunn JF. In vitro MR imaging of hyaline cartilage: correlation with scanning electron microscopy. AJR Am J Roentgenol 2000;174:405-9.

[66] Goodwin DW. Visualization of the macroscopic structure of hyaline cartilage with MR imaging. Semin Musculoskelet Radiol 2001;5:305-12.

[67] Smith HE, Mosher TJ, Dardzinski BJ, et al. Spatial variation in cartilage T2 of the knee. J Magn Reson Imaging 2001;14:50-5.

[68] Mosher TJ, Smith H, Dardzinski BJ, etal. MR imaging andT2 mapping of femoral cartilage: in vivo determination of the magic angle effect. AJR Am J Roentgenol 2001;177:665-9.

[69] Waldschmidt JG, Rilling RJ, Kajdacsy-Balla AA, et al. In vitro and in vivo MR imaging of hyaline cartilage: zonal anatomy, imaging pitfalls, and pathologic conditions. Radiographics 1997;17:1387-402.

[70] Gagliardi JA, Chung EM, Chandnani VP, etal. Detection and staging of chondromalacia patellae: relative efficacies of conventional MR imaging, MR arthrography, and CT arthrography. AJR Am J Roentgenol 1994;163:629-36.

[71] van Leersum M, Schweitzer ME, Gannon F, et al. Chondromalacia patellae: an in vitro study. Comparison of MR criteria with histologic and macroscopic findings. Skeletal Radiol 1996;25:727-32.

[72] De Smet AA, Monu JU, Fisher DR, et al. Signs of patellar chondromalacia on sagittal T2-weighted magnetic resonance imaging. Skeletal Radiol 1992;21:103-5.

[73] Nieminen MT, Toyras J, Rieppo J, et al. Quantitative MR microscopy of enzymatically degraded articular cartilage. Magn Reson Med 2000;43:676-81.

[74] Biswal S, Hastie T, Andriacchi TP, et al. Risk factors for progressive cartilage loss in the knee: a longitudinal magnetic resonance imaging study in forty-three patients. Arthritis Rheum 2002;46:2884-92.

[75] Hwang WS, Li B, Jin LH, etal. Collagen fibril structure of normal, aging, and osteoarthritic cartilage. J Pathol 1992;167:425-33.

[76] Mori Y, Kubo M, Okumo H, et al. A scanning electron microscopic study of the degenerative cartilage in patellar chondropathy. Arthroscopy 1993;9:247-64.

[77] Beltran J, Marty-Delfaut E, BencardinoJ, etal. Chondrocalcinosis of the hyaline cartilage of the knee: MRI manifestations. Skeletal Radiol 1998;27:369-74.

[78] Suan JC, Chhem RK, Gati JS, etal. 4TMRI of chondrocalcinosis in combination with three-dimensional CT, radiography, and arthroscopy: a report of three cases. Skeletal Radiol 2005;34:714-21.

[79] Nakanishi K, Inoue M, Harada K, et al. Subluxation of the patella: evaluation of patellar articular cartilage with MR imaging. Br J Radiol 1992;65:662-7.

[80] Wong M, Carter DR. Articular cartilage functional histomorphology and mechanobiology: a research perspective. Bone 2003;33:1-13.

[81] Levy AS, Lohnes J, Sculley S, etal. Chondral delamination of the knee in soccer players. Am J Sports Med 1996;24:634-9.

[82] Holderbaum D, Malvitz T, Ciesielski CJ, et al. A newly described hereditary cartilage de-bonding syndrome. Arthritis Rheum 2005;52:3300-4.

[83] Kendell SD, Helms CA, Rampton JW, et al. MRI appearance of chondral delamination injuries of the knee. AJR Am J Roentgenol 2005;184:1486-9.

[84] Keinan-Adamsky K, Shinar H, Navon G. The effect of detachment of the articular cartilage from its calcified zone on the cartilage microstructure, assessed by 2H-spectroscopic double quantum filtered MRI. J Orthop Res 2005;23:109-17.

[85] Beaule PE, Zaragoza E, Copelan N. Magnetic resonance imaging with gadolinium arthrography to assess acetabular cartilage delamination. A report of four cases. J Bone Joint Surg Am 2004;86-A:2294-8.

[86] Sanders RK, CrimJR. Osteochondral injuries. Semin Ultrasound CTMR2001;22:352-70.

[87] Felson DT. An update on the pathogenesis and epidemiology of osteoarthritis. Radiol Clin North Am 2004;42:1-9 [v].

[88] Hofmann S, Kramer J, Vakil-Adli A, et al. Painful bone marrow edema of the knee: differential diagnosis and therapeutic concepts. Orthop Clin North Am 2004;35:321-33.

[89] Mandalia V, Fogg AJ, Chari R, et al. Bone bruising of the knee. Clin Radiol 2005;60: 627-36.

[90] Lazzarini KM, Troiano RN, Smith RC. Can running cause the appearance of marrow edema on MR images of the foot and ankle? Radiology 1997;202:540-2.

[91] Yao L, Stanczak J, Boutin RD. Presumptive subarticular stress reactions of the knee: MRI detection and association with meniscal tear patterns. Skeletal Radiol 2004;33: 260-4.

Zanetti M, Pfirrmann CW, Schmid MR, etal. Patients with suspected meniscal tears: prevalence of abnormalities seen on MRI of 100 symptomatic and 100 contralateral asymptomatic knees. AJR Am J Roentgenol 2003;181:635-41.

Arndt WF 3rd, Truax AL, Barnett FM, et al. MR diagnosis of bone contusions of the knee: comparison of coronal T2- weighted fast spin-echo with fat saturation and fast spin-echo STIR images with conventional STIR images. AJR Am J Roentgenol 1996;166:119-24. Zanetti M, Bruder E, Romero J, etal. Bone marrow edema pattern in osteoarthritic knees: correlation between MR imaging and histologic findings. Radiology 2000;215:835-40. RanggerC, KathreinA, Freund MC, etal. Bone bruise of the knee: histology and cryosec-tions in 5 cases. Acta Orthop Scand 1998;69:291-4.

Roemer FW, Bohndorf K. Long-term osseous sequelae after acute trauma of the knee joint evaluated by MRI. Skeletal Radiol 2002;31:615-23.

Boks SS, Vroegindeweij D, Koes BW, etal. Follow-up of occult bone lesions detected at MR imaging: systematic review. Radiology 2006;238:853-62.

Vellet AD, Marks PH, Fowler PJ, et al. Occult posttraumatic osteochondral lesions of the knee: prevalence, classification, and short-term sequelae evaluated with MR imaging. Radiology 1991;178:271-6.

Bergman AG, Willen HK, Lindstrand AL, etal. Osteoarthritis of the knee: correlation of subchondral MR signal abnormalities with histopathologic and radiographic features. Skeletal Radiol 1994;23:445-8.

Nolte-Ernsting CC, Adam G, Buhne M, etal. MRI of degenerative bone marrow lesions in experimental osteoarthritis of canine knee joints. Skeletal Radiol 1996;25:41 3-20. De Smet AA, Ilahi OA, Graf BK. Reassessment of the MR criteria for stability of osteochondritis dissecans in the knee and ankle. Skeletal Radiol 1996;25:159-63. De Smet AA, Fisher DR, Graf BK, etal. Osteochondritis dissecans of the knee: value of MR imaging in determining lesion stability and the presence of articular cartilage defects. AJR Am J Roentgenol 1990;155:549-53.

Kramer J, Stiglbauer R, Engel A, etal. MR contrast arthrography (MRA) in osteochondrosis dissecans. J Comput Assist Tomogr 1992;16:254-60.

O'Connor MA, Palaniappan M, Khan N, et al. Osteochondritis dissecans of the knee in children. A comparison of MRI and arthroscopic findings. J Bone Joint Surg Br 2002; 84:258-62.

Adam G, Buhne M, Prescher A, et al. Stability of osteochondral fragments of the femoral condyle: magnetic resonance imaging with histopathologic correlation in an animal model. Skeletal Radiol 1991;20:601-6.

De Smet AA, Ilahi OA, Graf BK. Untreated osteochondritis dissecans of the femoral condyles: prediction of patient outcome using radiographic and MR findings. Skeletal Radiol 1997;26:463-7.

Chung CB, Lektrakul N, Resnick D. Straight and rotational instability patterns of the knee: concepts and magnetic resonance imaging. Radiol Clin North Am 2002;40:203-16. Sanders TG, Medynski MA, Feller JF, et al. Bone contusion patterns of the knee at MR imaging: footprint of the mechanism of injury. Radiographics 2000;20:S135-51. Bealle D, Johnson DL. Subchondral contusion of the knee caused by axial loading from dashboard impact: detection by magnetic resonance imaging. J South Orthop Assoc 2000;9:13-8.

Shelbourne KD, Nitz PA. The O'Donoghue triad revisited. Combined knee injuries involving anterior cruciate and medial collateral ligament tears. Am J Sports Med 1991;19: 474-7.

Sallay PI, Poggi J, Speer KP, etal. Acute dislocation of the patella. A correlative pathoana-tomic study. Am J Sports Med 1996;24:52-60.

Elias DA, White LM, Fithian DC. Acute lateral patellar dislocation at MR imaging: injury patterns of medial patellar soft-tissue restraints and osteochondral injuries of the inferome-dial patella. Radiology 2002;225:736-43.

113] Kirsch MD, Fitzgerald SW, Friedman H, et al. Transient lateral patellar dislocation: diagnosis with MR imaging. AJR Am J Roentgenol 1993;161:109-13.

114] Quinn SF, Brown TR, DemlowTA. MR imaging of patellar retinacular ligament injuries. J Magn Reson Imaging 1993;3:843-7.

115] Tomatsu T, Imai N, Takeuchi N, etal. Experimentally produced fractures of articular cartilage and bone. The effects of shear forces on the pig knee. J Bone Joint Surg Br 1992;74:457-62.

116] Hinton RY, Sharma KM. Acute and recurrent patellar instability in the young athlete. Or-thopClin North Am 2003;34:385-96.

117] MaenpaaH, LehtoMU. Patellofemoral osteoarthritis after patellar dislocation. Clin Orthop 1997;339:156-62.

118] Obedian RS, Grelsamer RP. Osteochondritis dissecans of the distal femur and patella. Clin Sports Med 1997;16:157-74.

119] Edwards DH, Bentley G. Osteochondritis dissecans patellae. J Bone Joint Surg Br 1977;59:58-63.

120] Peters TA, McLean ID. Osteochondritis dissecans of the patellofemoral joint. Am J Sports Med 2000;28:63-7.

121] MurrayJ. Chronic knee pain in the athlete. Pediatr Ann 1984;13:613-5; 618-619; 621.

122] Mori Y, Kubo M, Shimokoube J, et al. Osteochondritis dissecans of the patellofemoral groove in athletes: unusual cases of patellofemoral pain. Knee Surg Sports Traumatol Ar-throsc 1994;2:242-4.

123] Schwarz C, Blazina ME, Sisto DJ, etal. The results of operative treatment of osteochondritis dissecans of the patella. Am J Sports Med 1988;16:522-9.

124] Boutin RD, JanuarioJA, NewbergAH, etal. MR imaging features of osteochondritis dissecans of the femoral sulcus. AJR Am J Roentgenol 2003;180:641-5.

125] Smith JB. Osteochondritis dissecans of the trochlea of the femur. Arthroscopy 1990;6:11-7.

126] Amendola A, Petrik J, Webster-Bogaert S. Ankle arthroscopy: outcome in 79 consecutive patients. Arthroscopy 1996;12:565-73.

127] Huylebroek JF, Martens M, Simon JP. Transchondral talar dome fracture. Arch Orthop Trauma Surg 1985;104:238-41.

128] Takao M, Ochi M, Uchio Y, etal. Osteochondral lesions of the talar dome associated with trauma. Arthroscopy 2003;19:1061-7.

129] Sorrento DL, Mlodzienski A. Incidence of lateral talar dome lesions in SER IV ankle fractures. J Foot Ankle Surg 2000;39:354-8.

130] Flick AB, Gould N. Osteochondritis dissecans of the talus (transchondral fractures of the talus): review of the literature and new surgical approach for medial dome lesions. Foot Ankle 1985;5:165-85.

131] Athanasiou KA, Niederauer GG, Schenck RCJr. Biomechanical topography of human ankle cartilage. Ann Biomed Eng 1995;23:697-704.

132] Bauer M, Jonsson K, Linden B. Osteochondritis dissecans of the ankle. A 20-year follow-up study. J Bone Joint Surg Br 1987;69:93-6.

133] Chen DS, Wertheimer SJ. Centrally located osteochondral fracture of the talus. J Foot Surg 1992;31:134-40.

134] Labovitz JM, Schweitzer ME. Occult osseous injuries after ankle sprains: incidence, location, pattern, and age. Foot Ankle Int 1998;19:661-7.

135] Sijbrandij ES, van Gils AP, Louwerens JW, et al. Posttraumatic subchondral bone contusions and fractures of the talotibial joint: occurrence of "kissing" lesions. AJR Am J Roentgenol 2000;175:1707-10.

136] Miller TT, BucchieriJS, Joshi A, etal. Pseudodefect of the talar dome: an anatomic pitfall of ankle MR imaging. Radiology 1997;203:857-8.

137] Linklater J. Ligamentous, chondral, and osteochondral ankle injuries in athletes. Semin Musculoskelet Radiol 2004;8:81-98.

138] Busconi BD, Pappas AM. Chronic, painful ankle instability in skeletally immature athletes. Ununited osteochondral fractures of the distal fibula. AmJ Sports Med 1996;24:647-51.

I fi



I fi



Tibia Fracture Animals

Was this article helpful?

0 0
Arthritis Joint Pain

Arthritis Joint Pain

Arthritis is a general term which is commonly associated with a number of painful conditions affecting the joints and bones. The term arthritis literally translates to joint inflammation.

Get My Free Ebook

Post a comment