Barbara Inflammation Rheumatoid Arthritis and Asthma

At age forty-one, Barbara had suffered with rheumatoid arthritis and asthma for years and was taking half a dozen prescription drugs, which barely kept her symptoms in check. Then Barbara's physician started her on the hormone prednisone. After seven months on the drug she had gained 100 pounds—she was carrying 251 pounds on her 5'2" frame— and also developed the "moon face" characteristic of prednisone users. The cure was worse than the disease.

As a last-ditch effort, she went to a nutritionally oriented medical center in Wichita, Kansas. There, Hugh D. Riordan, M.D., and Ronald E. Hunninghake, M.D., found Barbara low in two essential "good" fats that are natural anti-inflammatory nutrients, as well as low in vitamins C and E and other nutrients. Lab tests also determined that Barbara had several allergylike food and chemical sensitivities, which helped fuel her overac-tive immune system and runaway inflammation.

The prescription was remarkably simple. Drs. Riordan and Hunning-hake recommended that Barbara eat a more wholesome diet, avoid the foods and chemicals she was sensitive to, and take fish oil supplements (which contain the good fats) and vitamins. Nine months later, her asthma was completely gone, her arthritic symptoms were so mild that she reduced her prednisone to less than one-thousandth of the dose she had been taking—from 40 mg daily to 1 mg per month—and she was able to stop taking all the other medications. Barbara also had lost seventy pounds, and her outlook toward life changed as well. She was now energetic, upbeat, and outgoing.

Pro- and Anti-Inflammatory Counterbalances

With all the bad news we hear about fats, it may surprise you to read that some types of fats form the foundation of the body's pro- and antiinflammatory compounds. Contrary to what you may have heard, fats (also known as fatty acids) are not inherently bad for health. Many fats are as essential for health as proteins, carbohydrates, vitamins, and minerals. Pro- and anti-inflammatory fats should serve as counterbalances to each other. Chronic inflammation can develop when there is a sharp imbalance in the types of fats consumed.

To understand how some fats increase or decrease inflammation, it helps to see them (and other pro- and anti-inflammatory substances) in simple terms, such as "matches" or "firefighters." Chronic inflammation often results from too many dietary matches. However, by making greater use of dietary firefighters you can restore a balance that prevents or even reverses chronic inflammation.

Pro-Inflammatory Matches

Two specific types of fats, as well as free radicals, prime our bodies for inflammation. Here is a brief description of them.

• The omega-6 family of fatty acids supplies the building blocks of a variety of powerful pro-inflammatory substances. The omega-6 fatty acids are commonly found as linoleic acid, most often in vegetable oils such as corn, safflower, peanut, cottonseed, and soy oils, as well as in processed and packaged foods containing these oils. The omega-6 fatty acids stimulate the body's production of many other inflammation-causing chemicals, such as prosta-glandin E2.

• Trans fatty acids are hidden in products containing "partially hy-drogenated vegetable oils," including salad dressings, breakfast bars, shortening, nondairy creamers, stick margarines, and many baked items such as cakes and cookies. Omega-6 vegetable oils are bad enough in themselves, but hydrogenation gives them many of the characteristics of saturated fats. Trans fatty acids do much of their damage by interfering with the body's handling of antiinflammatory fats, specifically the omega-3 fatty acids.

• Free radicals are hazardous molecules that damage the body's cells, increase the risk of many diseases, and accelerate the aging process. They also stimulate and prolong inflammatory reactions.

Anti-Inflammatory Firefighters

Three specific types of fats, as well as antioxidant nutrients, help control inflammation. Here is a brief overview of them.

• The omega-3 family of fatty acids supplies the building blocks of a variety of powerful anti-inflammatory substances. The parent fat of the omega-3s, alpha-linolenic acid, is found in dark green leafy vegetables and flaxseed. More potent omega-3s, especially EPA (eicosapentaenoic acid), are found in coldwater fish such as salmon and herring. Basically, the omega-3s encourage the body's production of inflammation-suppressing compounds. They help remind the body to turn inflammatory reactions off when they are no longer needed.

• GLA (gamma-linolenic acid) is technically an omega-6 fatty acid, but it behaves more like an anti-inflammatory omega-3. It enhances the inflammation-suppressing effect of omega-3s.

• The omega-9 family of fatty acids works with the omega-3s as anti-inflammatory compounds. They are found in olive oil, avocados, macadamia nuts, and macadamia nut oil.

• Antioxidants such as vitamins E and C are particular types of nutrients that neutralize free radicals and help quell inflammatory reactions.

The Pro-Inflammatory Pathway

Linoleic acid, the basis of all the other omega-6 fatty acids, is essential for health. However, the modern diet provides far too much of it, shifting our bodies toward chronic inflammation. The widespread use of vegetable cooking oils—in kitchens, restaurants, and packaged foods—is a principal reason for the prevalence of inflammatory disorders. As but one illustration, a study in the January 2002 American Journal of Clinical Nutrition showed that the omega-6 fats in vegetable oils increased inflammation in heart cells.

The body converts linoleic acid to a series of more powerful compounds. Chief among them is arachidonic acid, which is subsequently converted into a variety of very powerful inflammation-causing compounds known as eicosanoids. Eicosanoids include such substances as prostaglandin E2.

The conversion of arachidonic acid to more powerful inflammation-causing substances such as prostaglandin E2 is strongly influenced by a

Pro- and Anti-Inflammatory Pathways omega-6 fatty acids omega-3 fatty acids

Linoleic Acid Found in margarine, shortening, and vegetable oils

Alpha-Linolenic Acid Found in leafy vegetables, flaxseed, and fish

Production of pro-inflammatory compounds

Production of anti-inflammatory compounds

group of proteins called cytokines. Some of these cytokines, such as inter-leukin-6 (IL-6) and C-reactive protein (CRP), prompt cells to unleash a variety of pro-inflammatory compounds.

The Anti-Inflammatory Pathway

In parallel with linoleic acid, alpha-linolenic acid is the parent molecule of many of the body's anti-inflammatory firefighters. However, the omega-3 fatty acids are less active biologically, which places them at an immediate disadvantage against the omega-6 fatty acids. A person has to make an extra effort to consume foods or supplements rich in omega-3 fatty acids to compensate for their weaker activity.

The body uses various enzymes to convert alpha-linolenic acid to more active substances, particularly eicosapentaenoic acid (EPA). EPA is ultimately converted to a group of eicosanoids that are either anti-inflammatory or "less inflammatory" than those in the omega-6 family. The advantage of coldwater fish such as salmon or mackerel over other foods is that they contain large amounts of preformed EPA and docosa-hexaenoic acid (DHA), thus saving your body the time and effort needed to make them from alpha-linolenic acid.

If the diet is dominated by linoleic acid, as is the case with the typical modern Western diet, the body will make abnormally large amounts of inflammation-causing compounds. However, increased intake of alpha-linolenic acid or EPA will exert an anti-inflammatory effect.

Although GLA is technically a member of the omega-6 family, it be haves more like an anti-inflammatory omega-3 fatty acid. GLA increases the body's levels of the anti-inflammatory substance called prostaglandin E1. It is among the body's checks and balances designed to prevent the omega-6s from getting completely out of control.

Considerable research has shown that people eating diets rich in alpha-linolenic acid, EPA, and DHA—think fish and vegetables—are less prone to inflammatory diseases. Research has similarly shown that supplements containing EPA, DHA, and GLA have striking antiinflammatory properties in arthritis, allergies, asthma, and many other -itis diseases. This is why these fatty acids are the first-line supplements for preventing and reversing inflammation.

More Firefighters: Omega-9 Fatty Acids

Another group of fatty acids, known as the omega-9 family, also possesses impressive anti-inflammatory properties. Your body can make omega-9 fatty acids from other fats, assuming that things work the way they should, but some foods provide a direct source of them. The basic building block of the omega-9 fatty acids is oleic acid, a monounsaturated fat found abundantly in olive oil, macadamia nuts, and avocados.

Many studies have found that diets rich in olive oil reduce the risk or severity of inflammatory diseases such as coronary artery disease and rheumatoid arthritis. In general the omega-9 family is synergistic with the anti-inflammatory omega-3 family.

Skewing the Balance with Trans Fatty Acids

In human diets the ratio of omega-6 to omega-3 fatty acids has historically been in the range of 1:1 to 2:1. Today, omega-6 fatty acids dominate omega-3 fatty acids by ratios estimated between 20:1 and 30:1 in the typical Western diet. This lopsided intake of omega-6 fatty acids smothers the minuscule amounts of alpha-linolenic acid, EPA, and DHA found in most modern diets. The huge quantity of omega-6 fatty acids in the diet encourages chronic inflammation, without any effective means of turning it off.

Trans fatty acids add significantly to this problem. They naturally occur in very small quantities in beef (being produced in the guts of ruminants), and have traditionally played only a minor role in human diets. Over the past several decades, however, the quantity of trans fatty acids in Western diets has skyrocketed.

Partially Hydrogenated Hazards

Beginning in the 1960s and 1970s, public health officials began urging people to consume more polyunsaturated fats, particularly the omega-6 variety, and fewer saturated fats as a step toward reducing the incidence of coronary heart disease. To expand the use of omega-6 oils, food makers began hydrogenating them. Hydrogenation adds many of the qualities of saturated fat, such as butter, and also increases the amount of trans fatty acids. Until very recently, trans fatty acids were considered safe.

This is no longer the case. Scientists have learned that trans fatty acids are far more hazardous to health than are the saturated fats in butter and fatty meats. Trans fatty acids inhibit many of the enzymes needed to convert linoleic acid and alpha-linolenic acid to pro- and anti-inflammatory compounds. In essence, trans fatty acids gum up the body's processing of other fatty acids at several stages.

If all things were equal, trans fatty acids would dampen production of both the body's pro- and anti-inflammatory compounds. However, it appears that trans fatty acids inhibit more of the enzymes needed by the anti-inflammatory omega-3 fatty acids than those involved with the omega-6 fatty acids. The consequence is that trans fatty acids interfere to a greater extent with the body's anti-inflammatory compounds.

It should come as no surprise that recent studies have found trans fatty acids to significantly increase the risk of heart disease, diabetes, and other diseases. For example, a major study by Harvard University researchers found that a high intake of trans fatty acids was strongly associated with the risk of coronary heart disease. In contrast, saturated fats (commonly thought of as the culprits) were only weakly associated with heart disease.

Key Inflammation Matches and Firefighters pro-inflammatory matches

Linoleic acid Vegetable oils anti-inflammatory firefighters

Alpha-linolenic acid Gamma-linolenic acid Eicosapentaenoic acid (EPA) Oleic acid (in olive oil) Vitamins E and C

(e.g., corn and safflower) Arachidonic acid Partially hydrogenated oils Free radicals

Free Radicals, Antioxidants, and Inflammation

Hazardous molecules known as free radicals damage cells and accelerate the aging process, as well as cause such age-related diseases as coronary artery disease and cancer. In simple terms free radicals lack a subatomic particle called an electron. Typically, electrons come in pairs, and to restore the pair, a free radical steals one from another molecule. That theft damages what had been a healthy cell.

Free radicals are found in virtually all dangerous chemicals, including air pollutants and cigarette smoke, and are generated when your body is exposed to radiation (even from sunlight). They are also created when your body burns food for energy, breaks down harmful chemicals in the liver, or fights infections. Indeed, your body's white blood cells generate large quantities of free radicals to destroy bacteria and virus-infected cells.

Free radicals also stimulate inflammation in several ways. They increase the activity of genes involved in making pro-inflammatory compounds such as IL-6. Free radicals also activate several different types of adhesion molecules, which enable various types of white blood cells to stick to other cells. Adhesion molecules should only stick to infectious microbes and damaged cells marked for cleanup. But in chronic inflammation, they can adhere to normal cells, including those in arteries and joints.

Antioxidants Are Anti-Inflammatory

The natural antidotes for free radicals are antioxidants, which include vitamins E and C and many other nutrients, particularly the many flavonoids found in vegetables, fruits, and herbs. Many antioxidants directly counteract the pro-inflammatory effects of free radicals. For example, vitamin E helps turn off genes involved in inflammation, as well as some types of adhesion molecules.

In the next chapter we will see how specific dietary changes have increased our intake of pro-inflammatory omega-6 fatty acids and decreased our consumption of anti-inflammatory omega-3 fatty acids.

Treating Rheumatoid Arthritis With Herbs Spices Roots

Treating Rheumatoid Arthritis With Herbs Spices Roots

Did You Know That Herbs and Spices Have Been Used to Treat Rheumatoid Arthritis Successfully for Thousands of Years Do you suffer with rheumatoid arthritis Would you like to know which herbs and spices naturally reduce inflammation and pain 'Treating Rheumatoid Arthritis with Herbs, Spices and Roots' is a short report which shows you where to start.

Get My Free Ebook


Post a comment