Endocoids and their Importance in Psychopharmacology


Natural products have been known to contain pharmacologically active substances that have been exploited by man since antiquity. In addition to the natural products that have been used to treat the physical symptoms of disease, such as atropine derivatives to reduce gastrointestinal spasm and aspirin derivatives to treat pyrexia, several plant extracts have been used specifically for their psychotropic actions. Reference has already been made in Chapter 15 to the opioids, cocaine and the natural psychostimulants, and to the cannabinoids as drugs of abuse. However the purpose of this chapter is to summarize the evidence implicating naturally occurring substances which occur within the mammalian brain and which appear to produce their psychotropic effects by activating specific receptors within the brain. Such substances are termed endocoids and they include the enkephalins and endorphins, which activate specific opioid receptors, the anandamide related compounds, which activate cannabinoid receptors, the endopsy-chosins and related compounds that activate sigma receptors and natural agonists and antagonists that show an affinity for the benzodiazepine receptors. These different types of endocoids will be discussed in terms of their possible physiological effects. The abuse potential of such substances has already been referred to in Chapter 15.

Endogenous cannabinoids and cannabinoid receptors

The Chinese emperor Shen Nung is believed to have produced the first written account of the medicinal properties of cannabis over 2000 years ago and various formulations of herbal cannabis have been used over the centuries to treat seizures, neuralgia, dysmenorrhoea, insomnia and even gonorrhoea. The hemp plant, Cannabis sativa, from which cannabis and many of the related compounds are obtained, has a long history in medicine. Thus over the centuries the cannabinoids have been used for the treatment of pain, asthma, dysentery, as sedatives, for the suppression of nausea and vomiting and as anticonvulsants. Although the clinical uses of the cannabinoids declined in the 20th century there has been a renewed interest in these natural compounds in recent years for the control of spasticity associated with multiple sclerosis and in the treatment of chronic pain. Such renewed interest coincided with greater attention being paid by the medical profession and society at large to herbal remedies.

Understanding the mechanism of action of the cannabinoids has been advanced by the identification and cloning of specific cannabinoid receptors in the mammalian brain and spleen and the identification of endogenous substances which bind to these receptors. Thus the cannabinoid receptors in the brain are primarily of the CB1 type. These receptors are widely distributed in areas concerned with motor activity (basal ganglia and cerebellum), memory and cognition (cerebral cortex and hippocampus), emotion (amygdala and hippocampus), sensory perception (thalamus) and with endocrine function (hypothalamus and pons). The distribution of radio-labelled tetrahydrocannabinol, the main active ingredient of Cannabis sativa, is similar to the distribution of the CB1 receptors and there is good evidence that the cannabinoids exact their action through these receptors. In addition to the CB1 receptors, CB2 receptors have been identified on macrophages in the spleen where they probably mediate the immunological effects of the cannabinoids. CB1 receptors have also been detected in peripheral tissues.

The discovery of cannabinoid receptors has raised the possibility that therapeutic agents could be developed that may combine the therapeutic uses of the cannabinoids with lack of abuse and drug dependency. The first endogenous substances to be shown to have a high affinity for the cannabinoid receptors were the anandamides, named after the Sanskrit word for ''bliss''=ananda. Structurally the endogenous ligands for the cannabinoid receptors are unlike those of plant origin (see Figure 19.1). The endogenous parent compound is a derivative of the endogenous fatty acid arachidonic acid, arachidonyl ethanolamide. More recently, two other endogenous unsaturated fatty acid ethanolamides with a high affinity for cannabinoid receptors have been identified in brain tissue. These are homo-gamma-linolenylethanolamide and docotetraenylethanolamide. These substances are agonists at central cannabinoid receptors and their structures are shown in Figure 19.1. The system comprising the cannabinoid receptors and endogenous anandamide-related compounds is referred to as the anandamide system. However, it must be borne in mind that endogenous ligands for cannabinoid receptors may exist with properties that differ from those of the anandamide series of compounds.

Arachidonic Acid Ethanolamide
Figure 19.1. Chemical structure of main active ingredient of Cannabis sativa, A9-tetrahydrocannabinol (THC) and the naturally occurring ligand for cannabinoid receptors anandamide (arachidonyl ethanolamide).

While there is convincing evidence that endogenous compounds exist in the mammalian brain that have properties which resemble those of tetrahydrocannabinol, the most potent cannabinoid from a plant source, the question arises regarding the need to postulate the existence of specific receptors for these natural ligands. After all, although opioid peptides have been isolated from brain extracts, the search for other receptor ligands, including those which bind to the benzodiazepine and sigma receptors, has not been nearly as successful. Nevertheless, due to the special nature of receptors which are coupled to G proteins, it is highly probable that there are natural ligands for all such receptors. This is because G proteins are single molecules that do not contain allosteric binding sites, unlike the benzodiazepine-GABA receptor where the benzodiazepine binding site is an allosteric regulatory site for GABA. For all G protein-coupled receptors, every receptor has an endogenous ligand associated with its binding site. Thus it is reasonable to conclude that the binding sites for the anandamide system in the mammalian brain are true receptor sites through which the physiological changes initiated by the cannabinoids are expressed.

Despite the recent advances in molecular biology, the mechanisms of action and the physiological functions of the anandamide system remain obscure. It would appear that the cannabinoid receptors and the anandamides reside within the neurons. Thus unlike the classical neurotransmitters noradrenaline and serotonin, the anandamides are not released into the synaptic cleft and are not involved in interneuronal communication. Instead the anandamides modulate the excitability and inhibitory responsiveness of neurons by acting on cannabinoid hetero-ceptors located on inhibitory and excitatory terminals. In this way, the cannabinoid receptors reduce the activity of these neurons by decreasing the influx of calcium through the calcium channels and increasing the efflux of potassium ions through the potassium channels located on the neuronal membrane. In some regions such as the cerebellum, there is a convergence of the G protein-linked receptors such as the GABA-B, adenosine A1, cannabinoid and kappa opioid receptors that inhibit the activity of adenylate cyclase thereby leading to a reduction in the release of glutamate. Thus it seems possible that the anandamide system modulates the activity of the major neurotransmitter systems including the opioid, prostenoid and glucocorticoid systems.

Sites of action of the cannabinoids

CB1 receptors are present in a high density in the hippocampus and cerebral cortex and the effects of cannabinoids on cognition and memory are undoubtedly related to their activation of the receptors in this brain region. These regions also mediate the effects of the cannabinoids on perception of time, sound, colour and taste. With regard to the motor effects, and effects on posture, of the cannabinoids it would appear that this is related to their agonist action on CB1 receptors located in the basal ganglia and cerebellum. Other central actions of the anandamide system include the hypothalamus (effect on body temperature), the spinal cord (antinociception) and the brain stem (suppression of nausea and vomiting).

The discovery that cells of the immune system contain both cannabinoid binding sites and cannabinoid receptor mRNA suggests that the immunosuppressive actions of the naturally occurring cannabinoids are receptor mediated. There is now evidence that cannabinoid receptors occur on spleen cells in rodents and man and in human thymus cells and monocytes, but the receptor density is lower than that occurring in the brain. The B-lymphocytes have been shown to contain the highest quantity of cannabinoid receptor mRNA. The specific binding of cannabinoids to the small intestine and testis has also been reported to occur in different mammalian species. As the peripheral cannabinoid receptor appears to be of the CB2 type which appears to be absent from the brain, there have been attempts to develop selective agonists which would lack psychotropic properties but which would be of therapeutic value as immunosuppressants and in the control of such autoimmune diseases as rheumatoid arthritis. Conversely, CB2 receptor antagonists may act as drugs to enhance immune function. To date, no compounds have reached clinical application despite showing promising pharmacological profiles in the preclinical stages of their development. There is hope that a new approach in which analogues of the anandamides are developed will be nucleus nerve terminal

Na1 channel

Nand P/Qtype voltage dependent Ca1" channel tetrahydrocannabinol @i,J-THC)-the active ingredient inwardly rectifying K1 channel of cannabis rannabinoid CBI receptor nucleus

Na1 channel

Nand P/Qtype voltage dependent Ca1" channel

of cannabis rannabinoid CBI receptor adenylate cyclase synaptic cleft inwardly rectifying K1 channel

A-type K" channel

Figure 19.2. Intracellular changes that occur following the activation of the cannabinoid-1 (CB1) receptor by cannabinoids.

adenylate cyclase

A-type K" channel synaptic cleft

© CNSforuim.com

Figure 19.2. Intracellular changes that occur following the activation of the cannabinoid-1 (CB1) receptor by cannabinoids.

more fruitful. A summary of the intracellular changes that occur in response to the stimulation of the CB1 receptor is shown in Figure 19.2.

Physiological processes in that endogenous cannabinoids may act as mediators

The possible physiological importance of the endogenous cannabinoids has largely been based on an extrapolation from the pharmacological properties of the THC-like compounds that are known for their psychotropic effects. Such drugs may differ in action from the endogenous cannabinoids because of their broad range of activity that follows the activation of both the CB1 and CB2 receptors, but also their ability to inhibit membrane bound enzymes and to cause a disruption of the normal function of the phospholipid compounds of neuronal and other membranes. Thus it would be anticipated that endogenous cannabinoids would show more selective actions both in the brain and periphery.

Tolerance is known to develop rapidly to many of the effects of the psychotropic cannabinoids but little is known regarding the mechanisms responsible for the development of tolerance to these drugs. One possibility to account for the development of tolerance is that compensatory decreases in the sensitivity or density of cannabinoid receptors occurs following the prolonged stimulation of these receptors, perhaps by inducing changes in the genetic expression of the receptor protein. This could occur as a result of a decrease in the signal transduction mechanism or in the affinity of the receptor sites for the cannabinoids. There are several in vitro and in vivo experimental studies in support of such mechanisms, but it is presently unproven whether such mechanisms apply to the components of the anandamide system.

In SUMMARY, there is abundant evidence that endogenous cannabinoids are components of the anandamide system and that they share many of the properties known to occur following the administration of the cannabinoids of plant origin. Thus the endogenous cannabinoids have been shown to induce sleep and thermoregulation. Whether they also cause other changes which are associated with the cannabinoids of plant origin (such as disturbances in cognition, memory, mood, coordination, perception and appetite) at physiologically relevant concentrations is presently unclear. Nevertheless, the anandamide system is of importance because of the therapeutic potential that drugs acting on specific CB1 or CB2 receptors may have. This is an area of psychopharmacology that may hold important therapeutic prospects for the future.

Endozepines as endogenous anxiolytic and anxiogenic agents

It has been postulated that, at the cellular level, the symptoms of anxiety can arise because:

1. There is inadequate activity of an endogenous anxiolytic ligand.

2. There is excessive activity of an endogenous inverse agonist at the benzodiazepine receptor site (see p. 232 for a detailed discussion).

3. There is a dysfunctional GABA-A receptor causing a shift in the GABA-A complex towards inverse agonist activity.

It is uncertain which of these three possibilities apply to patients with anxiety disorders. There is evidence that the binding of the benzodiazepine receptor antagonist, flumazenil, is lower than normal in patients with panic disorder and that it increases the panic attack frequency in these patients but not in normal subjects. This has been interpreted as a slight shift in the benzodiazepine receptor towards the inverse agonist state.

Another possibility that may account for an increase or decrease in the anxiety state relates to the presence of endogenous ligands that act on the benzodiazepine receptors. These ligands have been called endozepines and although a number of compounds have been isolated from mammalian brain it is uncertain whether the endogenous concentration is sufficiently high for them to modulate GABA-A receptor or benzodiazepine receptor function.

Three types of endozapines have been isolated. It is known that the beta-carbolines can be synthesized in the mammalian brain and that, in vitro, they act as inverse agonists at benzodiazepine receptor sites. Theoretically such compounds could induce anxiety. However, none of these compounds has been isolated in vivo and the original detection of a beta-carboline in the urine of anxious patients was later found to be an artifact, possibly caused by bacterial contamination.

A diazepam binding inhibitor has been isolated from mammalian brain and found to be a mixture of two peptides (an octodecaneuropeptide and a trikontatetra neuropeptide) which stimulates neurosteroid synthesis by acting on peripheral benzodiazepine receptors. There are two main neurosteroids present in the mammalian brain which are antagonists of GABA-A receptors, namely dehydroepiandrosterone and its sulphate form (DHEA and DHEAS). These neurosteroids are also synthesized in the adrenal glands. These neurosteroids are known to have multiple effects of brain function by affecting mood, cognition and sleep; they also enhance neuronal plasticity and are neuroprotective.

The third group of compounds are the naturally occurring benzodiaze-pines. Desmethyldiazepam has been isolated from human brains which were stored frozen in the 1930s, at least two decades before the benzodiazepines were developed. While there is no evidence that the benzodiazepine structure can be synthesized enzymatically in the mammalian brain, several other compounds of this type have since been isolated from cattle brain and from human breast milk. One possibility is that gastrointestinal flora can partially synthesize the benzodiazepine molecule and it is also known that plants such as wheat and potatoes are a potential source of diazepam, desmethyldiazepam and lormetazepam. If it is eventually shown that the local brain concentration of these benzodia-zepines is sufficiently high to activate the benzodiazepine receptors then the possibility arises that anxiety disorders could result from a lack of these endozepines.

Several species of plant also contain compounds that have been shown to act as agonists on benzodiazepine receptors. These include: Valeriana officinalis which contains hydroxypinoresinol, Matricaria recutita which contains 5,7,4'-trihydroxyflavone, Passiflora coeruleus which contains chrysin and Karmelitter Geist which contains amentoflavin. Hypericum perforatum (St John's Wort) also contains unknown compounds which have affinity for these receptors. Extracts of these drugs are commonly recommended by herbalists for the treatment of insomnia and anxiety.

Endogenous sleep factors

Early in the 20th century, Pierin in Paris infused the CSF of sleep-deprived dogs into normal dogs and showed that the CSF contained a sleep-inducing (somnogenic) factor. This was thought to be a muramyl peptide but later suggested to be the result of bacterial contamination as these peptides cannot be synthesized by the mammalian brain.

Pro-inflammatory cytokines (see p. 432 et seq.) can also induce sleep, the effect depending on the concentration of the cytokine and the time of day. The effect on the sleep profile (increased non-REM and decreased REM sleep) appears to depend on the increased synthesis of prostaglandin D2 and nitric oxide which then alter the circadian rhythm. It is also known that some pro-inflammatory cytokines can affect the reuptake of 5-HT which plays an important role in regulating the sleep-wake profile. The endogenous fatty acid, oleamide, can cause sedation and induce sleep by activating cannabinoid receptors but also by potentiating the action of benzodiazepines on their receptor sites. Whether such action is of physiological relevance is presently unknown.

In SUMMARY, the naturally occurring ligands for the benzodiazepine and /or GABA-A receptor sites that act as sedative-hypnotics or anxiolytics all directly or indirectly augment GABA-A receptors and thereby depress neuronal activity. In this respect they act in a similar way to the various classes of drugs used to treat anxiety and insomnia. Such compounds do not induce natural sleep. They all increase slow-wave sleep but reduce REM sleep.

Function and therapeutic effects of sigma receptors

The sigma opiate receptor was originally proposed by the American neuropharmacologist William R. Martin as the site that mediates the psychotomimetic and stimulatory effects of cyclazocine, pentazocine, N-allyl normetazocine (SKF10047) and related opiates in humans and dogs. However, there is now considerable evidence to suggest that these effects are not mediated by opioid receptors. Many of the opiates that have psychotomimetic properties also bind with a high affinity to phencyclidine (PCP) receptor sites situated in the channel of the N-methyl-D-aspartate (NMDA) receptor. It now appears from electrophysiological, biochemical, anatomical and molecular studies that there are two distinct sites that bind opioid analgesics that have an affinity for sigma receptors. One site is on the PCP receptor situated in the NMDA receptor. The other sigma site is defined as non-opioid, non-dopaminergic and shows a high affinity for haloperidol and N-allyl normetazocine. Using a highly selective ligand for sigma receptors such as ditolyguanidine (DTG), it has now been possible to separate sigma receptors into two major types. Sigma-1 receptors are the main neuronal type and exhibit a high affinity for centrally acting antitussive and anticonvulsant drugs. The other site has a low affinity for most sigma ligands except DTG and haloperidol. This site is found in the red nucleus and cerebellum (as well as many other brain regions) where it may mediate the motor (dystonic) effects of different types of sigma ligand. Biochemically the sigma-1 and sigma-2 receptors may also be distinguished by the nature of the second messenger to which they are attached. Thus the sigma-1 receptors appear to be linked to guanylyl nucleotide binding proteins (G proteins) whereas the sigma-2 sites are not and may bring about their physiological effects by modulating K+ channels.

Sigma receptors and psychosis

Some 20 years ago, Martin and coworkers proposed that the psychoto-mimetic effects of pentazocine and related opiate analgesics was due to their effect on sigma receptors. It is now known that the sigma receptors are quite distinct from PCP, opioid, serotonin and dopamine receptors. However, many psychotropic drugs that bind to dopamine, serotonin and PCP receptors also have a high affinity for sigma receptors. For example, haloperidol and the novel benzamide neuroleptic remoxipride bind with high affinity for both D2 and sigma receptors. Nevertheless, there are many potent neuroleptics that have a negligible affinity for sigma receptors and conversely, many sigma ligands that do not apparently have any neuroleptic activity, but it remains a possibility that there could be an involvement of sigma receptors in the pathology of schizophrenia. Thus receptor autoradiographic studies of post-mortem schizophrenic brain have demonstrated a significant reduction of sigma binding sites in the frontal cortex, amygdala and hippocampus without any significant change in the density of PCP binding sites. Therefore, the evidence linking a malfunc-tional sigma receptor system to schizophrenia, or the use of selective sigma receptor ligands as putative neuroleptics, is inconclusive.

Sigma receptors and the immune and endocrine systems

Experimental evidence suggests that sigma receptors play an important role in regulating and integrating both immune and endocrine functions. In experimental studies, it has been shown that the selective sigma ligand N-allyl-normetazocine stimulates the hypothalamic-pituitary-adrenal axis but suppresses luteinizing hormone and prolactin secretion. A high density of sigma receptors has been identified on human leucocytes and in the rat spleen, testis, ovary and adrenal gland. In human leucocytes it has also been shown that sigma receptors are involved in the second signalling mechanisms that are essential for cellular activation. In addition, sigma receptors have been identified on human and rat T and B cells. There is experimental evidence to show that the suppression of T cell replication, and enhanced activity of monocyte phagocytosis, that occurs in some rodent models of depression, can be effectively reversed by the chronic administration of selective sigma ligands such as igmesine. This suggests that such compounds may be of benefit in correcting the diverse immune and possibly endocrine defects that characterize depression.

Clinical implications


Following the discovery that some antipsychotic drugs bind to sigma receptors, the suggestion arose that sigma receptors may be involved in schizophrenia and in the mode of action of antipsychotic drugs. Support for this hypothesis arose from the observation that the density of sigma receptors was dramatically reduced in several brain regions of post-mortem brains from schizophrenic patients. Such changes appeared to be restricted to the sigma receptor and did not involve the NMDA receptor or the PCP receptor. Whether such findings implicate alterations in sigma receptor function in schizophrenia is uncertain as it is possible that the changes in the density of these receptors is a function of the duration of treatment with neuroleptics. Support for the possible involvement of sigma receptors in schizophrenia, and in the action of antipsychotic drugs comes from the observation that haloperidol had a high affinity for these receptors in rat brain. Furthermore rimcazole, a putative neuroleptic, was found to have a high affinity for sigma receptors with little action on dopamine receptors. Several other sigma-selective ligands were also developed as possible neuroleptics. Unfortunately, despite convincing pre-clinical data showing that many of the sigma-selective ligands were active in animal models predictive of antipsychotic activity, none proved to have efficacy in clinical trials. It would therefore seem that the sigma ligands so far developed are unlikely to become the novel neuroleptics of the future.

Movement disorders

The most common symptomatic dystonias result from the administration of neuroleptics and occur as acute dystonic reactions or as tardive dyskinesia.

The dystonias are disorders that involve sustained, involuntary muscle contractions and abnormal posture which interferes with normal motor function. Dystonias can be focal, as in the case of torticollis in which the neck involuntarily rotates, or they may be progressive and generalized as in torsion dystonia in which the body slowly becomes contorted. Torsian dystonia is familial and recent studies have identified a defective gene which may be responsible.

Acute dystonic reactions occurring following the administration of potent neuroleptics are reported primarily in young men and usually develop shortly after the start of therapy. By contrast, tardive dystonia occurs following chronic neuroleptic treatments; as with tardive dyskinesia, symptoms often begin after the abrupt withdrawal of the neuroleptic. Although less severe than acute dystonic reactions, tardive dystonia is frequently permanent and difficult to treat.

Until recently, the cause of dystonia has been assumed to involve a dysfunction of the basal ganglia. However, it is now known that most patients with lesions of the basal ganglia show no evidence of dystonia while those patients with dystonia exhibit little biochemical or anatomical change in basal ganglia function. More recently, there is clinical evidence that dystonia is associated with lesions of the brainstem and the cerebellum. The cerebellum is closely linked to the red nucleus which contains a high density of sigma receptors but few dopamine, serotonin or glutamate receptors. The brainstem region is also implicated in the hereditary mutant mouse model of dystonia in which the symptoms are known to be associated with both brainstem and cerebellar lesions.

The presence of sigma receptors in anatomical structures that control movement and posture provides indirect evidence for the link between sigma receptors and dystonia. Further support for the involvement of these receptors is provided by the effects induced by the direct administration of sigma ligands into the red nucleus of rats; the degree of dystonia produced is directly proportional to the affinity of the drug for the sigma receptors. Additional experimental support for the involvement of sigma receptors in idiopathic dystonias comes from studies on a strain of rats which can develop a lethal dystonia but which are free of any identifiable anatomical lesions. It would appear that the density of sigma receptors is dramatically reduced compared to their non-affected litter-mates.

Regarding neuroleptic-induced dystonias, it is well known that typical neuroleptics cause catalepsy in rats and movement disorders in man. By contrast, the atypical neuroleptics clozapine and sulpiride have a low propensity to cause movement disorders in man even though they have established antipsychotic effects. These atypical neuroleptics, unlike many of the typical neuroleptics, have a low affinity for sigma receptors which lends support to the hypothesis that the dystonias produced by typical neuroleptics are related to their affinity for sigma receptors in the brainstem-cerebellar region.

Neurodegenerative disorders

So far all the evidence implicating the neuroprotective action of sigma ligands has been based on animal models of stroke or neurodegeneration. Several sigma ligands such as igmesine (JO 1784), NPC 26377, ifenprodil and eliprodil have been shown to protect gerbils against ischaemic insult resulting from the bilateral occlusion of the carotid arteries; this is a popular experimental model of stroke. Similarly, ifenprodil and eliprodil, which have high affinity for sigma receptors in rat brain, are effective in protecting the mouse against focal cerebral ischaemia when administered after the induction of ischaemia. It would appear that the neuroprotective action is due to modulation of the polyamine site on the NMDA-glutamate receptor. However, as sigma ligands such as DTG, 3-PPP and BM414802 (which lack affinity for the NMDA glutamate receptor) have no neuroprotective action in the mouse model of focal cerebral ischaemia, it is uncertain whether highly selective sigma ligands would be effective in focal ischaemia in man.

In other experimental studies, the potent sigma ligand igmesine has been shown to potentiate the potassium-evoked release of acetylcholine from rat hippocampal slices in vitro, an effect which is blocked by haloperidol. This suggests that igmesine may act as a sigma-1 agonist and may facilitate memory formation. Further evidence for this possibility is provided by the anti-amnestic action of igmesine in scopolamine-treated rats. These experimental studies suggest that sigma ligands, particularly sigma-1 agonists, may have therapeutic potential in the treatment of stroke and possibly in facilitating memory formation in the aged brain. Only doubleblind clinical trials of drugs such as igmesine, which appear to be relatively devoid of peripheral organ toxicity, will determine whether the various animal models of memory deficit and neurodegeneration are really predictive of potential therapeutic activity.

Anxiety and depression

There is experimental evidence to show that representative drugs for most classes of antidepressants have a modest affinity for sigma-1 receptors in vitro. Some antidepressants, such as sertraline and the monoamine oxidase-A inhibitor clorgyline, are moderately potent ligands for their receptor site. However, more recent studies have indicated that the most important final common pathway for the action of antidepressants involves the modulation of the NMDA-glutamate receptor possibly via the sigma receptor. It therefore seems uncertain that potent and selective sigma ligands will form the basis of a new group of antidepressants. However, there is more convincing experimental evidence to suggest that sigma ligands could have anxiolytic or anti-stress activity. Thus igmesine and DTG have been shown to block environmentally induced stress or corticotrophin-releasing factor induced colonic activity in the rat. Recently there has been renewed interest in the clinical development of igmesine as an antidepressant. Other experimental studies have shown that selective sigma ligands such as Lu 28-178 are potent anxiolytics in rodent models of anxiety.

The future of sigma receptor ligands

Besides the obvious need to develop highly potent and selective drugs for the sigma-1 and sigma-2 receptor sites, knowledge of the precise structures of the sigma receptors is required in order to establish firmly their identity. The presence of sigma receptors in the brain, in the gastrointestinal tract and endocrine and immune systems suggests that there must be endogenous factors that act as agonists and antagonists for these receptors. To date the nature of these endogenous factors is unknown but there is experimental evidence to implicate some neuropeptides (such as neuropep-tides-Y and PYY) and steroids such as progesterone and deoxycorticoster-one as putative ligands. In addition to the need for more detailed experimental studies to characterize the cellular mechanism of action of the different types of sigma receptors it is also essential to broaden the clinical profile of these drugs. So far, attention has been almost exclusively directed at the action of relatively non-selective sigma ligands in the treatment of psychotic disorders. The experimental findings that sigma compounds may have putative neuroprotective and anxiolytic/anti-stress effects will hopefully encourage the further development of the highly selective sigma compounds for their therapeutic application.

Was this article helpful?

0 0
How To Bolster Your Immune System

How To Bolster Your Immune System

All Natural Immune Boosters Proven To Fight Infection, Disease And More. Discover A Natural, Safe Effective Way To Boost Your Immune System Using Ingredients From Your Kitchen Cupboard. The only common sense, no holds barred guide to hit the market today no gimmicks, no pills, just old fashioned common sense remedies to cure colds, influenza, viral infections and more.

Get My Free Audio Book

Post a comment