Gouty Arthritis

Cure Arthritis Naturally

Beat Arthritis Naturally

Get Instant Access

Gouty arthritis is caused by the aggregated presence of monosodium urate crystals in the limb joints or their deposition in the periarticular soft-tissue structures as foreign bodies. It is categorized into (a) acute gouty arthritis, (b) intercritical gout, and (c) chronic tophaceous gout. Of these, acute gouty arthritis and chronic tophaceous gout are discussed because the combined use of scintigraphy and radiography in these two diseases synergistically enhances diagnostic accuracy. Initial or relapsing acute gouty arthritis is characterized by exquisite pain, requiring urgent treatment. Attack occurs

Diffuse Aortitis

Fig. 12.12A, B The "centipede" sign of the costovertebral joint involvement in SLE. A Posterior pinhole scan of the mid-thoracic spine shows diffuse tracer uptake in the vertebrae along with visualization of the costovertebral joints (arrows) and costotransverse joints (arrowheads) creating the "centipede" appearance. B Anteroposterior radiograph reveals blurring and narrowing ofthe costovertebral joints (arrows) and costotransverse joints (arrowheads)

Fig. 12.12A, B The "centipede" sign of the costovertebral joint involvement in SLE. A Posterior pinhole scan of the mid-thoracic spine shows diffuse tracer uptake in the vertebrae along with visualization of the costovertebral joints (arrows) and costotransverse joints (arrowheads) creating the "centipede" appearance. B Anteroposterior radiograph reveals blurring and narrowing ofthe costovertebral joints (arrows) and costotransverse joints (arrowheads)

Year Old Man Toe

Fig. 12.13A, B Gouty arthritis in the great toe. A Dorso-plantar radiograph of the left great toe in a 63-year-old man with acute gouty arthritis shows swelling of the local soft tissue around the metatarsophalangeal joint (arrowheads). B Dorsal pinhole scintigraph reveals prominent tracer uptake in the head of the metatarsal and the base of the phalanx (arrows). Note that radiography does not show detectable bony change in this early stage

Fig. 12.13A, B Gouty arthritis in the great toe. A Dorso-plantar radiograph of the left great toe in a 63-year-old man with acute gouty arthritis shows swelling of the local soft tissue around the metatarsophalangeal joint (arrowheads). B Dorsal pinhole scintigraph reveals prominent tracer uptake in the head of the metatarsal and the base of the phalanx (arrows). Note that radiography does not show detectable bony change in this early stage

Diffuse Aortitis

Fig. 12.14A, B Gouty arthritis in the ankle. A Lateral radiograph of the right ankle in a 41-year-old man shows diffuse swelling of the periarticular soft tissue without evidence of definite articular or bone change (arrows). B Lateral pinhole scintigraph reveals intense tracer uptake in the talocrural and posterior talocalcaneal joint (arrows). Note higher diagnostic sensitivity of pinhole scintigraphy

Fig. 12.14A, B Gouty arthritis in the ankle. A Lateral radiograph of the right ankle in a 41-year-old man shows diffuse swelling of the periarticular soft tissue without evidence of definite articular or bone change (arrows). B Lateral pinhole scintigraph reveals intense tracer uptake in the talocrural and posterior talocalcaneal joint (arrows). Note higher diagnostic sensitivity of pinhole scintigraphy usually in a single joint in early phases and multiple joints in chronic phases. Urate crystals that show strong negative birefringence under polarized light, present in synovial fluid along with leukocytes during an attack. The basic pathology is nonspecific inflammatory reaction of the synovium with polymorphonuclear leu-kocytic infiltration. Although yet not accepted generally, the needle-shaped and rod-like crystals may be responsible for acute gouty synovi-tis and chronic gouty synovitis, respectively.

Talocuboid Joint

Fig. 12.15A, B Tophaceous gouty arthritis. A Dorsal pinhole scintigraph of the left foot in a 46-year-old man with chronic gouty arthritis reveals intense tracer uptake in the lateral tarsometatarsal joints (arrows) and also in some other joints but of less intensity (arrowheads). B Dorsoplantar radiograph shows erosion, porosis, and articular narrowing in the lateral tarsometatarsal joints (black arrows). The talocuboid joint is obscured due to inflammation and erosions (white arrow)

Fig. 12.15A, B Tophaceous gouty arthritis. A Dorsal pinhole scintigraph of the left foot in a 46-year-old man with chronic gouty arthritis reveals intense tracer uptake in the lateral tarsometatarsal joints (arrows) and also in some other joints but of less intensity (arrowheads). B Dorsoplantar radiograph shows erosion, porosis, and articular narrowing in the lateral tarsometatarsal joints (black arrows). The talocuboid joint is obscured due to inflammation and erosions (white arrow)

Radiographic alterations are usually unimpressive during the first few years even in the presence of repeated acute attacks. Initiating changes are mild to moderate thickening of the synovium and periarticular soft tissue with focal osteopenia, for example, in the great toe (Fig. 12.13A), foot and ankle (Fig. 12.14A),

Talocuboid Joint

Fig. 12.16A, B Gouty arthritis with tophi in the midfoot. A Lateral radiograph of the left foot in a 41-year-old man with chronic gouty arthritis and tophi shows articular narrowing of the intertarsal and metatarsophalangeal joints with multiple punched-out tophaceous defects at the dorsal aspects of the tarsal bones (arrows). B Lateral pinhole scintigraph reveals tracer uptake in the subtalar and talonavicular joints and the intertarsal joints as well as punched-out defects (arrows)

Fig. 12.16A, B Gouty arthritis with tophi in the midfoot. A Lateral radiograph of the left foot in a 41-year-old man with chronic gouty arthritis and tophi shows articular narrowing of the intertarsal and metatarsophalangeal joints with multiple punched-out tophaceous defects at the dorsal aspects of the tarsal bones (arrows). B Lateral pinhole scintigraph reveals tracer uptake in the subtalar and talonavicular joints and the intertarsal joints as well as punched-out defects (arrows)

but most typically in the great toe and the metatarsophalangeal and intertarsal joints (Fig. 12.15A). In contrast, patients with longstanding disease show joint space narrowing with subchondral cystic change (Fig. 12.16A). Generally, however, joint space narrowing is not a prominent feature in gouty arthritis. A

Talonavicular Joint Space

Fig. 12.17A, B Prepatellar bursitis and infrapatellar ligamental enthesitis with tiny calcified tophi. A Lateral soft-tissue radiograph of the right knee in a 47-year-old man with gouty enthesitis shows diffuse thickening of the prepatellar and infrapatellar ligaments and soft tissue (arrows). Note tiny calcium deposits (arrowheads). B Lateral pinhole scintigraph reveals intense tracer uptake in ligamental attachments at the prepatellar surface and tibial tuberosity (arrows)

Infrapatellar Bursitis

Fig. 12.18A-C Nuclear angiography in gouty arthritis. A, B Arteriogram and blood-pool scan of the right ankle in another 47-year-old man with gouty arthritis shows increased blood flow and blood pool focally at the medial aspect of the talonavicular joint (upper arrow) and the lateral aspect of the first metatarsophalangeal joint (lower arrow). C Dorsoplantar radiograph reveals diffuse soft-tissue swelling in the respective affected joints (arrows)

Fig. 12.18A-C Nuclear angiography in gouty arthritis. A, B Arteriogram and blood-pool scan of the right ankle in another 47-year-old man with gouty arthritis shows increased blood flow and blood pool focally at the medial aspect of the talonavicular joint (upper arrow) and the lateral aspect of the first metatarsophalangeal joint (lower arrow). C Dorsoplantar radiograph reveals diffuse soft-tissue swelling in the respective affected joints (arrows)

pathognomonic sign is calcium deposition in the tophi.

Scintigraphy shows marked tracer uptake in gouty arthritis from the early stage of the disease, often predating radiographic change. Pinhole scintigraphy is useful for the early and specific diagnosis of acute gouty synovitis. The magnified view of painful joints with acute gouty arthritis reveals prominent periarticular bone tracer uptake (Figs. 12.13B and 12.14B).

Talonavicular Joint

Fig. 12.19A, B Charcot's joint. A Mediolateral radiograph of the right knee in a 31-year-old man with advanced neuroarthropathy reveals bizarre bone destruction with exophytic bones (arrows), sclerosis, irregular joint space narrowing, subluxation, and soft-tissue swelling. B Medial pinhole scintigraph shows intense tracer uptake in the collapsed, subluxed tibial head and the exo-phytic bones (arrows). The joint is irregularly narrowed and deformed. Less intense tracer uptake can be seen in all the periarticular bones including the patella (P), producing the "wrapped bone" sign of synovitis

Fig. 12.19A, B Charcot's joint. A Mediolateral radiograph of the right knee in a 31-year-old man with advanced neuroarthropathy reveals bizarre bone destruction with exophytic bones (arrows), sclerosis, irregular joint space narrowing, subluxation, and soft-tissue swelling. B Medial pinhole scintigraph shows intense tracer uptake in the collapsed, subluxed tibial head and the exo-phytic bones (arrows). The joint is irregularly narrowed and deformed. Less intense tracer uptake can be seen in all the periarticular bones including the patella (P), producing the "wrapped bone" sign of synovitis

The articular space may or may not be involved. Chronic tophaceous gouty arthritis with repeated attacks manifests as articular narrowing with patchy tracer uptake (Fig. 12.15). Occasional patients with longstanding disease may reveal discrete "hot" areas in the punched-out bone defects produced by tophi (Fig. 12.16B). One of our patients with prepatellar bursitis and infrapatellar ligamental enthesitis with cal

Charcot Joint

Fig. 12.20A, B Detached bones in Charcot's joint. A Anteroposterior radiograph of the left knee in a 13-year-old boy with poliomyelitis demonstrates subluxation and multiple fracture fragments liberated from the lateral femoral condyle (arrows). B Anterior pinhole scintigraph reveals diffusely increased tracer uptake in the subluxed joint and one of the detached bones (open arrow). Other detached bones do not accumulate tracer due to devascu-larization

Fig. 12.20A, B Detached bones in Charcot's joint. A Anteroposterior radiograph of the left knee in a 13-year-old boy with poliomyelitis demonstrates subluxation and multiple fracture fragments liberated from the lateral femoral condyle (arrows). B Anterior pinhole scintigraph reveals diffusely increased tracer uptake in the subluxed joint and one of the detached bones (open arrow). Other detached bones do not accumulate tracer due to devascu-larization cified tophi showed very intense uptake in the prepatellar bone surface and ligamental insertion in the tibia (Fig. 12.17). Whole-body scanning is unique in globally grasping the affected joints in a single panoramic view. It is worth noting that nuclear angiography provides useful information about the activity of inflammation in gouty arthritis by showing increased blood flow and blood pool (Fig. 12.18).

Was this article helpful?

0 0
Natural Arthritis Pain Remedies

Natural Arthritis Pain Remedies

It's time for a change. Finally A Way to Get Pain Relief for Your Arthritis Without Possibly Risking Your Health in the Process. You may not be aware of this, but taking prescription drugs to get relief for your Arthritis Pain is not the only solution. There are alternative pain relief treatments available.

Get My Free Ebook


Post a comment