References

1. Freeman, B. A. and Crapo, J. D., Free radicals and tissue injury, Lab. Invest., 47, 412, 1982.

2. Chance, B., Sies, H., and Boveris, A., Hydroperoxide metabolism in mammalian organs, Physiol. Rev., 59, 527, 1979.

3. Trush, M. A., Mimnaugh, E. G., and Gram, T. E., Activation of pharmacologic agents to radical intermediates: implications for the role of free radicals in drug action and toxicity, Biochem. Pharmacol., 31, 3335, 1982.

4. Boveris, A., Determination of the production of superoxide radicals and hydrogen peroxide in mitochondria, Methods Enzymol., 105, 429, 1984.

5. Thomas, C. E. and Kalyanaraman, B., Oxygen Radicals and the Disease Process, Hargood Academic Publishers, Amsterdam, the Netherlands, 1997.

6. Allen, R. C., Stjernholm, R. L., and Steele, R. H., Evidence for the generation of an electronic excitation state(s) in human polymorphonuclear leukocytes and its participation in bactericidal activity, Biochem. Biophys. Res. Commun., 47, 679, 1972.

7. Stjernholm, R. L., Allen, R. C., Steele, R. H., Waring, W. W., and Harris, J. A., Impaired chemilumi-nescence during phagocytosis of opsonized bacteria, Infect. Immun., 7, 313, 1973.

8. Cadenas, E. and Sies, H., Low-level chemiluminescence as an indicator of singlet molecular oxygen in biological systems, Methods Enzymol., 105, 221, 1984.

9. Trush, M. A., Chemiluminescence as a probe to investigate chemical-cell interactions: a toxicological perspective, in Cellular Chemiluminescence, Vol. III, Van Dyke, K. and Castranova, V., Eds., CRC Press, Boca Raton, FL, 1987, 185.

10. Cadenas, E., Low-level chemiluminescence of biological systems, in Bioluminescence and Chemiluminescence: New Perspectives, Scholmerich, J., Andreesen, R., Kapp, A., Ernst, M., and Woods, W.G., John Wiley & Sons, New York, 1987, 33.

11. Trush, M. A., Wilson, M. E., and Van Dyke, K., The generation of chemiluminescence (CL) by phagocytic cells, Methods Enzymol., 75, 462, 1978.

12. Kahl, R., Weimann, A., and Hildebrant, A. G., Detection of active oxygen in rat hepatocyte suspensions with chemilumigenic probe lucigenin, Biochem. Biophys. Res. Commun., 140, 468, 1986.

13. Maly, F. E., Cross, A. R., Jones, D. T., Wolf-Vorbeck, G., Walker, C., Dahinden, C. A., and DeWeck, A. L., The superoxide generating system of B cell lines. Structural homology with the phagocytic oxidase and trigerring via surface Ig, J. Immunol., 140, 2334, 1988.

14. McKinney, K. A., Lewis, S. E., and Thompson, W., Reactive oxygen species in human sperm: luminol and lucigenin chemiluminescence probes, Arch. Androl., 36, 119, 1996.

15. Ohoi, I., Sone, K., Tobari, H., Kawano, E., and Nakamura, K., A simple chemiluminescence method for measuring oxygen-derived free radicals generated in oxygenated rat myocardium, Jpn. J. Pharmacol., 61, 101, 1993.

16. Liochev, S. I. and Fridovich, I., Lucigenin (bis-N-methylacridinium) as a mediator of superoxide anion production, Arch. Biochem. Biophys., 337, 115, 1997.

17. Vasquez-Vivar, J., Hogg, N., Pritchard, K. A., Jr., Martasek, P., and Kalyanaraman, B., Superoxide from lucigenin: an electron spin reasonance spin-trapping study, FEBS Lett., 403, 127, 1997.

18. Li, Y., Zhu, H., Kuppusamy, P., Rouband, V., Zweier, J. L., and Trush, M. A., Validation of lucigenin (bis-N-methylacridinium) as a chemilumigenic probe for detecting superoxide anion radical production by enzymatic and cellular systems, J. Biol. Chem., 273, 2015, 1998.

19. Liochev, S. I. and Fridovich, I., Lucigenin as mediator of superoxide production: revisited, Free Radical Biol. Med., 25, 926, 1998.

20. Afanas'ev, I. B., Ostrachovitch, E. A., and Korking, L. G., Lucigenin is a mediator of cytochrome c reduction but not of superoxide production, Arch. Biochem. Biophys., 366, 267, 1999.

Spasojevic, I., Liochev, S. I., and Fridovich, I., Lucigenin: redox potential in aqueous media and redox cycling with O- production, Arch. Biochem. Biophys., 373, 447, 2000.

Li, Y., Zhu, H., and Trush, M. A., Detection of mitochondria-derived reactive oxygen species production by the chemilumigenic probes lucigenin and luminol, Biochem. Biophys. Acta, 1428, 1, 1999. Li, Y., Stansbury, K. H., Zhu, H., and Trush, M. A., Biochemical characterization of lucigenin (bis-N-methylacridinium) as a chemiluminescent probe for detecting intramitochondrial superoxide anion production, Biochem. Biophys. Res. Commun., 262, 80, 1999.

Nanni, E. J., Jr., Anelis, C. T., Dickson, J., and Sawyer, D. T., Oxygen activation by radical coupling between superoxide ion and reduced methyl viologen, J. Am. Chem. Soc., 103, 4268, 1981. Skatchkov, M. P., Sperling, D., Hink, U., Mulsch, A., Harrison, D. G., Sinderman, I., Meinertz, T., and Munzel, T., Validation of lucigenin as a chemiluminescent probe to monitor vascular superoxide as well as basal vascular nitric oxide production, Biochem. Biophys. Res. Commun., 254, 319, 1999. Tarpey, M. M., White, C. R., Suarez, E., Richardson, G., Radi, R., and Freeman, B. A., Chemilumi-nescent detection of oxidants in vascular tissue: lucigenin but not coelenterazine enhances superoxide formation, Circ. Res., 84, 1203, 1999.

Barbacanne, M., Souchard, J., Darblade, B., Fliou, J., Nepveu, F., Pipy, B., Bayard, F., and Arnal, J., Detection of superoxide anion released extracellularly by endothelial cells using cytochrome C reduction, ESR, fluorescence and lucigenin-enhanced chemiluminescence techniques, Free Radical Biol. Med., 29, 388, 2000.

Skatchkov, M. P., Sperling, D., Hink, U., Anggard, E., and Munzel, T., Quantification of superoxide radical formation in intact vascular tissue using a Cypridina luciferin analog as an alternative to lucigenin, Biochem. Biophys. Res. Commun., 248, 382, 1998.

Heiser, I., Muhr, A., and Elstner, F. F., Production of OH-radical-type oxidant by lucigenin, Z. Naturforsch. [C], 53, 9, 1998.

Sohn, H. Y., Keller, M., Gloe, T., Crause, P., and Pohl, U., Pitfalls of using lucigenin in endothelial cells: implications for NAD(P)H dependent superoxide formation, Free Radical Res., 32, 265, 2000. Allen, R. C., Phagocytic oxygenation activities: quantitative analysis based on luminescence, in Bioluminescence and Chemiluminescence: New Perspectives, Scholmerich, J., Andreesen, R., Kapp, A., Ernst, M., and Woods, W. G., Eds., John Wiley & Sons, New York, 1987, 13. Jacobshagen, U. and Andreesen, R., Respiratory burst formation by human macrophages at different stages of maturation: dissociation of the generation of particular oxygen radicals, in Bioluminescence and Chemiluminescence: New Perspectives, Scholmerich, J., Andreesen, R., Kapp, A., Ernst, M., and Woods, W. G., John Wiley & Sons, New York, 1987, 77.

Esterline, R. and Trush, M. A., Lucigenin chemiluminescence and its relationship to mitochondrial respiration in phagocytic cells, Biochem. Biophys. Res. Commun., 159, 584, 1989. Rembish, S. J. and Trush, M. A., Further evidence that lucigenin-derived chemiluminescence monitors mitochondrial superoxide generation in rat alveolar macrophages, Free Radical Biol. Med., 17, 117, 1994. Li, Y. and Trush, M. A., Diphenyleneiodonium, an NAD(P)H oxidase inhibitor, also potently inhibits mitochondrial reactive oxygen species production, Biochem. Biophys. Res. Commun., 253, 295, 1998. He, H., Wang, X., Gorospe, M., Holbrook, N., and Trush, M. A., Phorbol ester-induced mononuclear cell differentiation is blocked by the mitogen-activated protein kinase kinase (MEK) inhibitor PD98059, Cell Growth Diff., 10, 307, 1999.

Rembish, S. J., Yang, Y., Esterline, R. L., Seacat, A., and Trush, M. A., Lucigenin-derived chemiluminescence as a monitor of mitochondrial maturation and modulation in mononuclear cells, in In Vitro Toxicology: Mechanisms and New Technology, Goldberg, A. M., Ed., Mary Ann Liebert, New York, 1991, 463.

Rembish, S. J., Yang, Y., and Trush, M. A., Inhibition of mitochondrial superoxide generation in rat alveolar macrophages by 12-tetradecanoylphorbol-13-acetate: potential role of protein kinase C, Res. Commun. Mol. Pathol. Pharmacol., 85, 115, 1994.

Hennet, T., Richter, C., and Peterhan, E., Tumor necrosis factor-alpha induces superoxide anion generation in mitochondria of L929 cells, Biochem. J., 15, 587, 1993.

Staniek, K. and Nohl, H., Are mitochondria a permanent source of reactive oxygen species? Biochem. Biophys. Acta, 1460, 268, 2000.

Braakman, I., Pijning, T., Verest, D., Weert, B., Meiger, D. K., and Groothuis, G. M., Vesicular uptake system for the cation lucigenin in the rat hepatocyte, Mol. Pharmacol., 36, 537, 1989.

42. Yang, S. Q., Zhu, H., Li, Y., Lin, H. Z., Gabrielson, K., Trush, M. A., and Diehl, A. M., Mitochondrial adaptations to obesity-related oxidant stress, Arch. Biochem. Biophys., 378, 259, 2000.

43. Li, Y., Zhu, H., Kuppusamy, P., Zweier, J. L., and Trush, M. A., A role for mitochondria-derived reactive oxygen species in protein kinase C-mediated signal transduction, Proc. Am. Assoc. Cancer Res., 41, 233, 2000.

44. Li, Y., Mitochondria-Derived Reactive Oxygen Species: Detection, Involvement in Mononuclear Cell Signal Transduction and Dysfunction, dissertation, Johns Hopkins University, Baltimore, MD, 1999.

45. Rembish, S. J., An In Vitro Mononuclear Cell Differentiation Model and Its Application to Toxicology, dissertation, Johns Hopkins University, Baltimore, MD, 1994.

46. He, H., Molecular Mechanisms of Chemical Modulation of Mononuclear Cell Differentiation, dissertation, Johns Hopkins University, Baltimore, MD, 1998.

47. Cohn, Z. A., The structure and function of monocytes and macrophages, Adv. Immunol., 9, 163, 1968.

48. Trush, M. A., Twerdok, L. E., Rembish, S. J., Zhu, H., and Li, Y., Analysis of target cell susceptibility as a basis for the development of a chemoprotective strategy against benzene-induced hematotoxicities, Environ. Health Perspect., 104(Suppl. 6), 1227, 1996.

49. Chen, J.-Q., Schwartz, D. A., Young, T. A., Norris, J. S., and Yager, J. D., Identification of genes whose expression is altered during mitosuppression in livers of ethinyl estradiol-treated female rats, Carcinogenesis, 17, 2783, 1996.

50. Chen, J.-Q., Gokhale, M., Li, Y., Trush, M. A., and Yager, J. D., Enhanced levels of several mitochon-drial mRNA transcripts and mitochondrial superoxide production during ethinyl estradiol-induced heepatocarcinogenesis and after estrogen treatment of HepG2 cells, Carcinogenesis, 19, 2182, 1998.

51. Chen, J. Q., Li, Y., Lavigne, J. A., Trush, M. A., and Yager, J. D., Increased mitochondrial superoxide production in rat lives mitochondria, rat hepatocytes, and HepG2 cells following ethinyl estradiol treatment, Toxicol. Sci., 51, 224, 1999.

52. Fleury, C., Neverova, M., Collins, S., Raimbault, S., Champigny, D., Levi-Meyrueis, C., Bouillard, F., Seldin, M. F., Surwit, R. S., Ricquier, D., and Warden, C. H., Uncoupling protein-2: a novel gene linked to obesity and hyperinsulinema, Nat. Genet., 15, 269, 1997.

53. Lee, J. F.-Y., Li, Y., Zhu, H., Yang, S. Q., Lin, H. Z., Trush, M. A., and Diehl, A. M., Tumor necrosis factor induces expression of uncoupling protein-2 in the regenerating liver, Hepatology, 29, 677, 1999.

54. Zhu, H., Li, Y., and Trush, M. A., Characterization of benzo[a]pyrene quinone-induced toxicity to primary cultured bone marrow stromal cells from DBA/2 mice: potential role of mitochondrial dysfunction, Toxicol. Appl. Pharmacol., 130, 108, 1995.

55. Cutlar, R. G., Packer, L., Bertram, J., and Mori, A., Eds., Oxidative Stress and Aging, Birkhauser Verlag, Basel, Switzerland, 1995.

56. Beckman, K. B. and Ames, B. N., The free radical theory of aging matures, Physiol. Res., 78, 547, 1998.

57. Sohal, R. S. and Dubey, A., Mitochondrial oxidative damage, hydrogen peroxide release, and aging, Free Radical Biol. Med., 16, 621, 1994.

58. Kwong, L. K. and Sohal, R. S., Substrate and site specificity of hydrogen peroxide generation in mouse mitochondria, Arch. Biochem. Biophys., 350, 118, 1998.

59. Kwong, L. K. and Sohal, R. S., Age related changes in activities of mitochondrial electron transport complexes in various tissues of the mouse. Arch. Biochem. Biophys., 373, 16, 2000.

60. Chen, H., Cangello, D., Benson, S., Folmer, J., Zhu, H., Trush, M. A., and Zirkin, B. R., Age-related increase in mitochondrial superoxide generation in the testosterone-producing cells of brown Norway rat testes: relationship to reduced steriodogenic function? Exp. Gerontol., 36, 1361, 2001.

61. Miesel, R., Murphy, M. P., and Kroger, H., Enhanced mitochondrial radical production in patients which rheumatoid arthritis correlates with elevated levels of tumor necrosis factor alpha in plasma, Free Radical Res., 25, 151, 1996.

62. Trulson, A., Nilsson, S., Brekkan, E., and Venge, P., Patients with renal cancer have a larger proportion of high-density blood monocytes with increased lucigenin-enhanced chemiluminescence, Inflammation, 18, 99, 1994.

63. Capone, G., Kim, P., Jovanovich, S., Payne, L., Freund, L., Welch, K., Miller, E., and Trush, M., Evidence for increased mitochondrial superoxide production in Down syndrome, Life Sci., in press.

64. Schuchmann, S. and Heinemann, U., Increased mitochondrial superoxide generation in neurons from trisomy 16 mice: a model of Down's syndrome, Free Radical Biol. Med., 28, 235 , 2000.

65. Busciglio, J. and Yankner, B., Apoptosis and increased generation of reactive oxygen species in Down's syndrome neurons in vitro, Nature, 378, 776, 1998.

66. Eaton, D. L. and Klaassen, C. D., Principles of toxicology, in Casarett and Doull's Toxicology: The Basic Science of Poisons, Klaassen, C. D., Ed., McGraw-Hill, New York, 1996, chap. 2.

67. Liochev, S. I. and Fridovich, I., Lucigenin luminescence as a measure of intracellular superoxide dismutase activity in Escherichia coli, Proc. Natl. Acad. Sci. U.S.A., 94, 2891, 1997.

68. Cilento, G., Dioxetanes as intermediate in biological processes, J. Theor. Biol., 55, 471, 1975.

69. Faljoni, A., Haun, M., Hoffman, M. E., Meneghini, R., Duran, N., and Cilento, G., Photochemical-like effects in DNA caused by enzymically energized triplet carbonyl compounds, Biochem. Biophys. Res. Commun., 80, 490, 1978.

70. Cilento, G. and Adam, W., Photochemistry and photobiology without light, Photochem. Photobiol., 48, 361, 1988.

71. Cilento, G., Generation of triplet carbonyl compounds during peroxidase catalysed reactions, J. Biolumin. Chemilumin., 4, 193, 1989.

72. Cilento, G. and Adam, W., From free radicals to electronically excited species, Free Radical Biol. Med., 19, 103, 1995.

Was this article helpful?

0 0
Treating Rheumatoid Arthritis With Herbs Spices Roots

Treating Rheumatoid Arthritis With Herbs Spices Roots

Did You Know That Herbs and Spices Have Been Used to Treat Rheumatoid Arthritis Successfully for Thousands of Years Do you suffer with rheumatoid arthritis Would you like to know which herbs and spices naturally reduce inflammation and pain 'Treating Rheumatoid Arthritis with Herbs, Spices and Roots' is a short report which shows you where to start.

Get My Free Ebook


Post a comment