1. Eisen AZ, Goldberg GI. The role of extracellular matrix metalloproteinases in connective tissue remodeling. In: Fitzpatrick TB, Eisen AZ, Wolff K etal.,eds. Dermatology in General Medicine. 4th ed. New York: McGraw-Hill, Inc. 1993:315-328.

2. Cawston TE. Metalloproteinase inhibitors and the prevention of connective tissue breakdown. Pharmacol Ther 1996; 3:163-182.

3. Henderson B, Blake S. In: Davies ME, Dingle JT, eds. Immunopharmacology of joints and connective tissue. London: Academic Press Limited, 1994.

4. Ryan ME, Ramamurthy NS, Golub LM. Matrix metalloproteinases and their inhibition in periodontal treatment. Curr Opin Periodont 1996; 3:85-96.

5. Bauer EA. Collagenase in recessive dystrophic epidermolysis bullosa. Ann NY Acad Sci 1992:310-320.

6. Brown PD. Matrix metalloproteinase inhibitors: a novel class of anticancer agents. Advan Enzyme Regul 1995; 35:293-301.

7. Greenwald RA. Round table discussion: Guidelines for clinical trial design for evaluation of MMP inhibitors. In: Greenwald RA, Golub LM, eds. Inhibition of matrix metalloproteinases: Therapeutic potential. New York: The New York Academy of Sciences, 1994; 732:273-279.

8. Greenwald RA, Golub LM, eds. Inhibition of matrix metalloproteinases: Therapeutic potential. New York: The New York Academy of Sciences, 1994.

9. White AD, Bocan TMA, Boxer PA et al. Emerging therapeutic advances for the development of second generation matrix metalloproteinase inhibitors. Current Pharmaceutical Design 1997; 3:45-58.

10. Uhlmann E, Peymann A. Antisense oligonucleotides: A new therapeutic principle. Chem Rev 1990; 90:544-582.

11. McEvoy GK, ed. AHFS Drug Information 93. Bethesda: American Society of Hospital Pharmacists, Inc., 1993.

12. Sande MA, Mandell GL. Antimicrobial agents. In: Gilman AG, Rall TW, Nies AS, Taylor P, eds. The Pharmacological Basis of Therapeutics. New York: Pergamon Press, 1990:1117-1125.

13. Trentham DE, Dynesius-trentham RA. Antibiotic therapy for rheumatoid arthritis. Rheumatic Disease Clinics of North America 1995: 21:817-834.

14. Ryan ME, Ramamurthy NS, Golub LM. Matrix metalloproteinases and their inhibition in periodontal treatment. Curr Opin Periodont 1996; 3:85-96.

15. Greenwald RA. Treatment of destructive arthritic disorders with MMP inhibitors. Potential role of tetracyclines. In: Greenwald RA, Golub LM, eds. Inhibition of matrix metalloproteinases: Therapeutic potential. New York: The New York Academy of Sciences, 1994; 732:181-198.

16. Ryan ME, Greenwald RA, Golub LM. Potential of tetracyclines to modify cartilage breakdown in osteoarthritis. Current Opinion in Rheumatology 1996; 8:238-247.

17. Golub LM, Lee HM, Lehrer G, et al. Minocycline reduces gingival collagenolytic activity during diabetes: Preliminary observations and a proposed new mechanism of action. J Periodont Res 1983; 18:516-526.

18. Greenwald RA, Golub LM, Lavietes B et al. Tetracyclines inhibit human synovial collagenase in vivo and in vitro. J Rheumatol 1987; 14:28-32.

19. Golub LM, Evans RT, McNamara TF et al. A nonantimicrobial tetracycline inhibits gingival matrix metalloproteinases and bone loss in porphyromonas gingivalis-induced periodontitis in rats. In: Greenwald RA, Golub LM, eds. Inhibition of matrix metalloproteinases: Therapeutic potential. New York: The New York Academy of Sciences, 1994; 732:96-111.

20. Sorsa T, Ding Y, Salo T et al. Effects of tetracyclines on neutrophil, gingival, and salivary collagenases. A functional and western-blot assessment with special reference to their cellular sources in periodontal diseases. In: Greenwald RA, Golub LM, eds. Inhibition of matrix metalloproteinases: Therapeutic potential. New York: The New York Academy of Sciences, 1994; 732:112-131.

21. Rifkin BR, Vernillo AT, Golub LM et al. Modulation of bone resorption by tetracyclines. In: Greenwald RA, Golub LM, eds. Inhibition of matrix metalloproteinases: Therapeutic potential. New York: The New York Academy of Sciences, 1994; 732:165-180.

22. Klapisz-Wolikow M, Saffar JL. Minocycline impairment of both osteoid tissue removal and osteoclastic resorption in a synchronized model of remodeling in the rat. J Cellular Physiology 1996; 167:359-368.

23. Masumori N, Tsukamoto T, Miyao N et al. Inhibitory effect of minocycline on in vitro invasion and experimental metastasis of mouse renal adenocarcinoma. J Urology 1994; 151:1400-1404.

24. Petrinec D, Liao S, Holmes DR et al. doxycycline inhibition of aneurysmal degeneration in an elastase-induced rat model of abdominal aortic aneurysm: Preservation of aortic elastin associated with suppressed production of 92 kD gelatinase. J Vasc Surg 1996; 23:336-346.

25. Golub LM, McNamara TF, D'angelo G, et al. A nonantibacterial chemically-modified tetracycline inhibits mammalian collagenase activity. J Dent Res, 1987; 66:1310-1314.

26. Ramamurthy N, Golub L, McNamara T, et al. A nonanticollagenase tetracycline analog (CMT-5) inhibits oxidative activation of matrix metalloproteinases (MMPs). J Dent Res, 1995; 74:207.

27. Lauhio AT, Sorsa O, Lindy K et al. The anticollagenolytic potential of lymecycline in the long-term treatment of reactive arthritis. Arthritis Rheum 1992; 35:195-198.

28. Ramamurthy NS, Vernillo AT, Greenwald RA et al. Reactive oxygen species activate and tetracyclines inhibit rat osteoblast collagenase. J Bone Miner Res 1993; 8:1247-1253.

29. Smith G, Brandt K, Hasty K. Procollagenase is reduced to inactive fragments upon activation in the presence of doxycycline. n: Greenwald RA, Golub LM, eds. Inhibition of matrix metalloproteinases: Therapeutic potential. New York: The New York Academy of Sciences, 1994; 732:436-438.

30. Uitto V-J, Firth JD, Leslie N, Golub LM. Doxycycline and chemically modified tetracyclines inhibit gelatinase (MMP-2) gene expression in human skin keratinocytes. In: Greenwald RA, Golub LM, eds. Inhibition of matrix metalloproteinases: Therapeutic potential. New York: The New York Academy of Sciences, 1994; 732:140-151.

31. Jonat C, Chung F-Z and Baragi VM Transcriptional downregulation of stromelysin by tet-racycline. J Cellular Biochemistry 1996; 60:341-347.

32. Amin AR, Attur MG, Thakker GD et al. A novel mechanism of action of tetracyclines: Effects on nitric oxide synthases. Proc Natl Acad Sci USA 1996; 93:14014-14019.

33. Trachtman H, Futterweit S, Greenwald R et al. Chemically modified tetracyclines inhibit inducible nitric oxide synthase expression and nitric oxide production in cultured rat mesangial cells. Biochem Biophys Res Commun 1996; 229:243-248.

34. Forsgren A, Schmeling D, Quie PG. Effect of tetracycline on the phagocytic function of human leukocytes. J Infect Dis 1974; 130:412-415.

35. Esterly NB, Koransky JS, Furey NL et al. Neutrophil chemotaxis in patients with acne receiving oral tetracycline therapy. Arch Dermatol 1984; 120:1308-1313.

36. Sewell KL, Breedveld F, Furrie E et al. The effect of minocycline in rat models of inflammatory arthritis: Correlation of arthritis suppression with enhanced T cell calcium flux. Cellular immunology 1996; 167:95-204.

37. Davies S, Cole AA, Schmid TM. Doxycycline inhibits type X collagen synthesis in avian hypertrophic chondrocyte cultures. J Biol Chem 1996; 271:25966-25970.

38. Sipos EP, Tamargo RJ, Weingart JD et al. Inhibition of tumor angiogenesis. In: Greenwald RA, Golub LM, eds. Inhibition of matrix metalloproteinases: Therapeutic potential. New York: The New York Academy of Sciences, 1994; 732:263-272

39. Gilbertson-Beadling S, Powers EA, Stamp-Cole M et al. The tetracycline analogs minocycline and doxycycline inhibit angiogenesis in vitro by a nonmetalloproteinase-dependent mechanism. Cancer Chemother Pharmacol 1995; 36:418-424.

40. Ciancio SG. Clinical experiences with tetracyclines in the treatment of periodontal diseases. In: Greenwald RA, Golub LM, eds. Inhibition of matrix metalloproteinases: Therapeutic potential. New York: The New York Academy of Sciences, 1994; 732:132-139

41. Skinner M, Cathcart ES, Mills JA et al. Tetracycline in the treatment of rheumatoid arthritis. A double blind controlled study. Arthritis Rheum 1971; 14:727-732.

42. Breedveld FC, Dijkmans BAC, Mattie H. Minocycline treatment for rheumatoid arthritis: an open dose finding study. J Rheumatol 1990; 17:43-46

43. Kloppenburg M, Breedveld FC, Terwiel JP et al. Minocycline in active rheumatoid arthritis. A double-blind, placebo-controlled trial. Arthritis Rheum 1994; 37:629-636.

44. Tilley BC, Alarcon GS, Heyse SP et al. Minocycline in rheumatoid arthritis. a 48-week double-blind, placebo-controlled trial. Ann Intern Med 1995; 122:81-89.

45. O'Dell JR, Haire CE, Palmer W et al. Treatment of early rheumatoid arthritis with minocycline or placebo. Arthritis Rheum 1997; 40:842-848.

46. Humbert P, Treffel P, Chapuis J-F et al. The tetracyclines in dermatology. J Am Acad Dermatol 1991; 25:691-697.

47. Marks R, Ellis J. Comparative effectiveness of tetracycline and ampicillin in rosacea: a controlled trial. Lancet 1971; 2:1049-1051.

48. Thomsen K, Osterbye P. Pustulosis palmaris et plantaris. Br J Dermatol 1973; 89:293-295.

49. White JE. Minocycline for dystrophic epidermolysis bullosa. Lancet 1989, 1:966.

50. Bauer EA, Eisen AZ. Recessive dystrophic epidermolysis bullosa: Evidence for increased collagenase as a genetic characteristic in cell culture. J Exp Med 1978; 148:1378-87.

51. Marinkovich MP. The molecular genetics of basement membrane diseases. Arch Dermatol 1993, 129:1557-1565.

52. Selzer JL, Eisen AZ, Bauer EA et al. Cleavate of type VII collagen by interstitial collagenase and type IV collagenase (gelatinase) derived from human skin. J Biol Chem 1989; 264:3822-3826.

53. Fivenson DP, Breneman DL, Rosen GB, et al. Nicotinamide and tetracycline therapy of bullous pemphigoid. Arch Dermatol 1994; 130:753-758.

54. Kolbach DN, Remme JJ, Bos WH et al. Bullous pemphigoid successfully controlled by tet-racycline and nicotinamide. Br J Dermatol 1995; 133:88-90.

55. Stahle-Backdahl M, Inoue M, Guidice GJ et al. 92-kD gelatinase is produced by eosino-phils at the site of blister formation in bullous pemphigoid and cleaves the extracellular domain of recombinant 180-kD bullous pemphigoid autoantigen. J Clin Invest 1994; 93:2022-2030.

56. Saarialho-Kere UK, Vaalamo M, Airola K et al. Interstitial collagenase is expressed by keratinocytes that are actively involved in reepithelialization in blistering skin disease. J Invest Dermatol 1995; 104:982-988.

57. Chin JR, Werb Z. Matrix metalloproteinases regulate morphogenesis, migration and remodeling of epithelium, tongue skeletal muscle and cartilage in the mandibular arch. Development 1997; 124:1519-1530.

58. Perry HD, Kenyon KR, Lamberts DW et al. Systemic tetracycline hydrochloride as adjunc-tive therapy in the treatment of persistent epithelial defects. Ophthalmology 1986; 93:1320-1322.

59. Häyrinen-Immonen R, Sorsa T, Pettilä J et al. Effect of tetracyclines on collagenase activity in patients with recurrent aphthous ulcers. J Oral Pathol Med 1994; 23:269-272.

60. Hurewitz AN, Wu CL, Mancuso P et al. Tetracycline and doxycycline inhibit pleural fluid metalloproteinases. Chest 1993; 103:1113-1117

61. Santavirta S, Takagi M, Konttinen YT et al. Inhibitory effect of cephalothin on matrix metalloproteinase activity around loose hip prostheses. Antimicrobial Agents and Chemotherapy 1996; 40:244-246.

62. Bols M, Binderup L, Hansen J et al. Inhibition of collagenase by aranciamycin and aranciamycin derivatives. J Med Chem 1992; 35:2768-2771.

63. Eisenberg M, Stevens LH, Schofield PJ. Epidermolysis bullosa-new therapeutic approaches. Australas J Dermatol 1978; 19:1-8.

64. Bauer EA, Cooper TW, Ucker DR, et al. Phenytoin therapy of recessive dystrophic epider-molysis bullosa. Clinical trial and proposed mechanism of action on collagenase. N Engl J Med 1980; 303:776-781.

65. Hashimoto I, Katabira Y, Mitsuhashi Y. Epidermolysis bullosa dystrophica recessiva Hallopeau-Siemens: report of a case with remission following phenytoin therapy. Hifubyo-Rinsho 1981; 3:1047-1050.

66. Bauer EA, Cooper TW, Tucker DR et al. Phenytoin therapy of recessive dystrophic epider-molysis bullosa. Clinical trial and proposed mechanism of action on collagenase. N Engl J Med 1980; 303:776-781.

67. Caldwell-Brown D, Stern RS, Lin AN et al. Lack of efficacy of phenytoin in recessive dystrophic epidermolysis bullosa. N Engl J Med 1992; 327:163-167.

68. Martel-Pelletier J, Mineau F, Tardif G et al. Tenidap reduces the level of interleukin 1 receptors and collagenase expression in human arthritic synovial fibroblasts. J. Rheumatol 1996; 23:24-31

69. Firestein GS, Paine MM, Boyle DL. Mechanisms of methotrexate action in rheumatoid arthritis. Arthritis and Rheumatism 1994; 37:193-200.

70. Ondetti MA, Rubin B, Cushman DW. Design of specific inhibitors of angiotensin-convert-ing enzyme: New class of orally active antihypertensive agents. Science 1977; 196:441-444.

71. Thorsett ED, Wyvratt MJ. Inhibition of zinc peptidases that hydrolyse neuropeptides. In: Neuropeptides and their peptidases, Ellis Horwood Ltd, Chichester, UD, 1987:229-292.

72. Matthews BW, Jansonius JN, Colman PM, et al. Three-dimensional structure of thermolysin. Nature New Biol 1972; 238:37-41.

73. Netzel-Arnett S, Fields G, Birkedal-Hensen H et al. Sequence specificities of human fibro-blast and neutrophil collagenases. J Biol Chem 1991; 266:6747-6755

74. Wu H, et al. Generation of collagenase-resistant collagen by site-directed mutagenesis of murine proa1(I) collagen gene. Proc Natl Acad Sci USA 1990; 87;5888.

75. Schechter I, Berger A. On the size of the active site in proteases. I. Papain. Biochem Bio-phys Res Commun 1967; 27: 157-162.

76. Hirose T, Patterson C, Pourmotabbed T et al. Structure-function relationship of human neutrophil collagenase—identification of regions responsible for substrate-specificity and general proteinase activity. Proc Natl Acad Sci USA 1993; 90:2569-2573.

77. Murphy G, Allan JA, Willenbrock F et al. The role of the C-terminal domain in collagenase and stromelysin specificity. J Biol Chem, 1992; 267;9612-9618.

78. Sancez-Lopez R, Alexander CM, Behrendtsen O et al. Role of Zinc-binding and hemopexin domain-encoded sequences in the substrate specificity of collagenase and stromelysin-2 as revealed by chimeric proteins. J Biol Chem 1993; 268:7238-7247.

79. Chapman KT, Kopka IE, Durette PL et al. Inhibition of matrix metalloproteinases by N-carboxyalkyl peptides. J. Med. Chem, 1993; 36:4293-4301

80. Wahl RC, Pulvino TA, Mathiowetz AM et al. Hydroxamate inhibitors of human gelatinase B (92 kDa). Bioorg Med Chem Lett, 1995; 5:349-352.

81. Gowravaram MR, Tomczak BE, Johnson JS et. al. Inhibition of matrix metalloproteinases by hydroxamates containing heteroatom-based modifications of the P1' group. J Med Chem 1995; 38:2570-2581.

82. Lloyd LF, Skarzynski T, Wonacott AJ et al. Crystallization and preliminary x-ray analysis of porcine synovial collagenase. J. Mol. Biol. 1989; 210:237-238

83. Lovejoy B, Cleasby A, Hassell AM et al. Structure of the catalytic domain of fibroblast collagenase complexed with an inhibitor. Science 1994; 263:375-377.

84. Spurlino JC, Smallwood AM, Carlton DD et al. 1.56 Ä structure of mature truncated human fibroblast collagenase. Proteins 1994; 19:98-109.

85. Lovejoy B, Hassell AM, Luther MA et al. Crystal structures of recombinant 19-kDa human fibroblast collagenase complexed to itself. Biochemistry 1994; 33:8207-8217.

86. Borkakoti N, Winkler FK, Williams DH et al. Structure of the catalytic domain of human fibroblast collagenase complexed with an inhibitor. Structural Biology 1994; 1:106-110.

87. Bode, W. A helping hand for collagenases: the hemopexin-like domain. Structure 1995; 3:527-530

88. Grams F, Crimmin M, Hinnes L et al. Structure determination and analysis of human neutrophil collagenase complexed with a hydroxamate inhibitor. Biochemistry 1995; 34:14012-14020

89. Bode W, Reinemer P, Huber R et al. The x-ray crystal structure of the catalytic domain of human neutrophil collagenase inhibited by a substrate analogue reveals the essentials for catalysis and specificity. The EMBO Journal 1994; 13:1263-1269

90. Grams F, Reinemer P, Powers JC et al. X-ray structures of human neutrophil collagenase complexed with peptide hydroxamate and peptide thiol inhibitors. Eur J Biochem 1995; 228:830-841

91. Stams T, Spurlino JC, Smith DL et al. Structure of human neutrophil collagenase reveals large S1' specificity pocket. structural biology 1994; 1:119-123

92. Betz M, Huxley P, Davies SJ et al. 1.8 Ä crystal structure of the catalytic domain of human neutrophil collagenase (matrix metalloproteinase-8) complexed with a peptidomimetic hydroxamate primed-side inhibitor with a distinct selectivity profile. Eur J Biochem 1997; 247:356-363.

93. Li J, Brick P, O'Hare MC et al. Structure of full-length porcine synovial collagenase reveals a C-terminal domain containing a calcium-linked, four-bladed ß-propeller. Structure 1995; 3:541-549

94. Becker JW, Marcy AI, Rokosz LL et al. Stromelysin-1: Three-dimensional structure of the inhibited catalytic domain and of the C-truncated proenzyme. Protein Science 1995; 4:1966-1976.

95. Gooley PR, O'Connell JF, Marcy AI et al. The NMR structure of the inhibited catalytic domain of human stromelysin-1. Structural Biology 1994; 1:111-118

96. Dhanaraj V, Ye QZ, Johnson LL et al. X-ray structure of a hydroxamate inhibitor complex of stromelysin catalytic domain and its comparison with members of the zinc metalloproteinase superfamily. Structure 1996; 4:375-386.

97. Willenbrock F, Murphy G, Phillips IR et al. The second zinc atom in the matrix metalloproteinase catalytic domain is absent in the full-length enzymes: A possible role for the C-terminal domain. FEBS Lett 1995; 358:189-192.

98. Botos I, Scapozza L, Zhang D et al. Batimastat, a potent matrix metalloprotease inhibitor, exhibits an unexpected mode of binding. Proc. Natl. Acad. Sci. USA 1996; 93:2749-2754

99. De Clerck YA, Shimada H, Taylor SM et al. Matrix metalloproteinases and their inhibitors in tumor progression. In: Greenwald RA, Golub LM, eds. Inhibition of matrix metalloproteinases: Therapeutic potential. New York: The New York Academy of Sciences, 1994; 732:222-232.

100. Wojtowcz-Praga SM, Dickson RB, Hawkins MJ. Matrix metalloproteinase inhibitors. In-vestigational New Drugs 1997; 15:61-75.

101. Chirivi RGS, Garofalo A, Crimmin MJ et al. Inhibition of the metastatic spread and growth of B16-BL6 murine melanoma by a synthetic matrix metalloproteinase inhibitor. Int. J. Cancer 1994; 58:460-464

102. Taraboletti G, Garofalo A, Belotti D et al. Inhibition of angiogenesis and murine heman-gioma growth by batimastat, a synthetic inhibitor of matrix metalloproteinases. Journal of the National Cancer Institute 1995; 87:293-298

103. Sledge, Jr. GW, Qulali M, Goulet R et al. Effect of matrix metalloproteinase inhibitor batimastat on breast cancer regrowth and metastasis in athymic mice. Journal of the National Cancer Institute 1995; 87:1546-1550.

104. Wang X, Fu X, Brown PD et al. Matrix metalloproteinase inhibitor BB-94 (batimastat) inhibits human colon tumor growth and spread in a patient-like orthotopic model in nude mice. Cancer Research 1994; 54:4726-4728

105. Watson SA, Morris TM, Robinson G et al. Inhibition of organ invasion by the matrix metalloproteinase inhibitor bastimastat (BB-94) in two human colon carcinoma metastasis models. Cancer Research 1995; 55:3629-3633

106. Watson SA, Morris TM, Parsons SL et al. Therapeutic effect of the matrix metalloproteinase inhibitor, batimastat, in a human colorectal cancer ascites model. British Journal of Cancer 1996; 74:1354-1358

107. Zubair AC, Ali SA, Rees RC et al. Investigation of the effect of BB-94 (batimastat) on the colonization potential of human lymphoma cells in SCID mice. Cancer Letters 1996; 107:91-95

108. Santos O, McDermott CD, Daniels RG et al. Rodent pharmacokinetic and anti-tumor efficacy studies with a series of synthetic inhibitors of matrix metalloproteinases. Clinical and Experimental Metastasis 1997; 15:499-508.

109. Collier MA, Yuen GJ, Bansal SK et al. A phase I study of the matrix metalloproteinase (MMP) inhibitor AG3340 given in single doses to healthy volunteers. Proc Am Assoc Cancer Res 1997; 38:221.

110. Grobelny D, Poncz, Galardy RE. Inhibition of human skin fibroblast collagenase, thermolysin, and Pseudomonas aeruginosa elastase by peptide hydroxamic acids. Biochemistry 1992; 31:7152-7154.

111.Holleran WM, Galardy RE, Gao WN et al. Matrix metalloproteinase inhibitors reduce phorbol ester-induced cutaneous inflammation and hyperplasia. Arch Dermatol Res 1997; 289:138-144.

112. Galardy RE, Grobelny D, Foellmer HG et al. Inhibition of angiogenesis by the matrix metalloprotease inhibitor N-[2R-2-(hyroxamideocarbonymethyl)-4-methylpentanoyl)]-L-tryptophan methylamide. Cancer Res 1994; 54:4715-4718.

113. Galardy RE, Cassabonne ME, Giese C et al. Low molecular weight inhibitors in corneal ulceration. In: Greenwald RA, Golub LM, eds. Inhibition of matrix metalloproteinases: Therapeutic potential. New York: The New York Academy of Sciences, 1994; 732:315-323.

114. Hill P, Docherty A, Bottomley K et al. Inhibition of bone resorption in vitro by selective inhibitors of gelatinase and collagenase. Biochem J 1995; 388:167-175.

115. Lewis EJ, Bishop J, Bottomley KMK et al. Ro 32-3555, an orally active collagenase inhibitor, prevents cartilage breakdown in vitro and in vivo. Br J Pharmacol 1997; 121: 540-546.

116. Wojtiwicz-Praga S, Low J, Marshall J et al. Phase I trial of a novel matrix metalloproteinase inhibitor bastimastat (BB-94) in patents with advanced cancer. Investigational New Drugs 1996; 14:193-202

117. Reuters, November 27, 1996

118. Hanglow AC, Lugo A, Walsky R et al. Peptides based on the conserved prodomain sequence of matrix metalloproteinases inhibit human stromelysin and collagenase. Agents Actions 1993; 39:C148-C150

119. Fotouhi N, Lugo A, Visnick M et al. Potent peptide inhibitors of stromelysin based on the prodomain region of matrix metalloproteinases, The Journal of Biological Chemistry 1994; 269:30227-30231

120. Ghose AK, Logan ME, Treasurywala AM et al. Determination of pharmacophoric geometry for collagenase inhibitors using a novel computational method and its verification using molecular dynamics, NMR, and x-ray crystallography. J Am Chem Soc 1995; 117:46714682

121. Huang X, Boxer SG. Discovery of new ligand binding pathways in myoglobin by random mutagenesis. Nature Structural Biology 1994; 1: 226-9.

122. Brinckerhoff CE, Plucinska IM, Sheldon LA et al. Half-life of synovial cell collagenase mRNA is modulated by phorbol myristate acetate but not by all-trans-retinoic acid or dexametha-sone. Biochemistry 1986; 25:6378-6384.

123. Goldberg GI, Wilhelm SM, Kronberger A, et al. Human fibroblast collagenase. J Biol Chem 1986; 261:6600-6605.

124. Collier IE, Smith J, Kronberger A, et al. The structure of the human skin fibroblast collagenase gene. 1988; 263:10711-10713.

125. Lin D, Duncan M, Allan E et al. Three matrix metalloproteinases on 81 kb of P1 insert. Genbank accession number U78045. Submitted November 12, 1996.

126. Wagner RW. Gene inhibition using antisense oligodeoxynucleotides. Nature 1994; 372:333-335.

127. Hearst JE. Psoralen photochemistry. Annu Rev Biophys Bioeng 1981; 10:691-696.

128. Zamecnick P, Aghajanian J, Zamecnik M et al. Electron micrographic studies of transport of oligodeoxynucleotides across eukaryotic cell membranes. Proc Natl Acad Sci USA 1994; 91:3156-3160.

129. Gewirtz AM, Stein CA, Glazer PM. Facilitating oligonucleotide delivery: Helping antisense deliver on its promise. Proc Natl Acad Sci USA 1996; 93:3161-3163.

130. Chatterjee S, Johnson PR and Wong KK. Dual-target inhibition of HIV-1 in vitro by means of an adeno-associated virus antisense vector. Science 1992; 258-1485-1488.

131. Stein CA. Antitumor effects of antisense phosphorothioate c-myc oligodeoxynucleotides: a question of mechanism. J Natl Cancer Instit 1996; 88:391-393.

132. Rockwell P, O'Connor WJ, King K et al. Cell-surface perturbations of the epidermal growth factor and vascular endothelial growth factor receptors by phosphorothioate oligodeoxynucleotides. Proc Natl Acad Sci USA 1997; 94: 6523-6528.

133. Hacia JG; Wold BJ; Dervan PB. Phosphorothioate oligonucleotide-directed triple helix formation. Biochemistry 1994; 33:5367-5369.

134. Matrisian LM. Metalloproteinases and their inhibitors in matrix remodeling. Trends in Genetics 1990; 6:121-125.

135. Lin CW, Robbins PD, Geogescu HI et al. Effects of immortalization upon the induction of matrix metalloproteinases in rabbit synovial fibroblasts. Exp Cell Res 1996; 223; 117-126.

136. Wlaschek M, Bolsen K, Herrmann G et al. UVA-induced autocrine stimulation of fibro-blast-derived-collagenase by IL-6: a possible mechanism in dermal photodamage? J Invest Dermatol 1993; 101:164-168.

137. Khokha R, Waterhouse P, Yagel S et al. Antisense RNA-induced reduction in murine TIMP levels confers oncogenicity on Swiss 3T3 cells. Science 1989; 243:947-950

138. Mauviel A, Chung K-Y, Agarwal A et al. Cell-specific induction of distinct oncogenes of the jun family is responsible for differential regulation of collagenase gene expression by transforming growth factor-b in fibroblasts and keratinocytes. J Biol Chem 1996; 271:10917-10923.

139. Delong RK, Miller PS. Inhibition of human collagenase activity by antisense oligonucleoside methylphosphonates. Antisense and Nucleic Acid Drug Development 1996; 6:273-280.

140. Durko M, Navab R, Shibata HR and Brodt P Suppression of basdement membrane type IV collagen degradation and cell invasion in human melanoma cells expressing an antisense RNA for MMP-1. Biochem Biophys Acta 1997; 1356:271-280.

141. Turck J, Pollock AS, Lee LK et al. Matrix metalloproteinase 2 (gelatinase A) regulates glom-erular mesangial cell proliferation and differentiation. J Biol Chem 1996; 271:15074-15083.

142. Kean JM, Murakami A, Blake KR et al. Photochemical cross-linking of psoralen-derivatized oligonucleoside methylphophonates to rabbit globin messenger RNA. Biochemistry 1988; 27:9113-9131.

143. Lin M, Hultquist KL, Oh DH et al. Inhibition of collagenase type I expression by psoralen antisense oligonucleotides in dermal fibroblasts. The FASEB Journal 1995; 9:1371-1377

144. Fisher GJ, Datta SC, Talwar HS et al. Molecular basis of sun-induced premature skin aging and retinoid antagonism. Nature 1996; 379:335-339.

145. Peterson MJ, Hansen C, Craig S. Ultraviolet A irradiation stimulates collagenase production in culture human fibroblasts. J Invest Dermatol 1992; 99:440-444.

146. Petersen M, Hamilton T, Li H. Regulation and inhibition of collagenase expression by long-wavelength ultraviolet radiation in cultured human skin fibroblasts. Photochem Photobiol 1995; 62:444-448.

147. Wlaschek M, Briviba K, Stricklin GP, et al. Singlet oxygen may mediate the ultraviolet A-induced synthesis of interstitial collagenase. J Invest Dermatol 1995; 104:194-198.

148. Bell E. the reconstitution of living skin. J Invest Dermtol 1983; 81: 2S-10S.

149. Eckes B, Mauch C, Huppe G, et al. Down regulation of collagen synthesis in fibroblasts within three-dimensional collagen lattices involves transcriptional and post-transcriptional mechanisms. FEBS Lett 1993; 318:129-133.

150. Soifer VN, Potaman VN. Triple-helical nucleic acids. New York: Springer-Verlag, 1996.

151. Wang G, Seidman MM, Glazer PM. Mutagenesis in mammalian cells induced by triple helix formation and transcription coupled repair. Science 1996; 271:802-805.

152. Miller PS, Bi G, Kipp SA et al. Triplex formation by a psoralen-conjugated oligodeoxyribonucleotide containing the base analog 8-oxo-adenine. Nucleic Acids Research 1996; 24:730-736

153. Cole-Strauss A, Yoon K, Xiang Y et al. Correction of the mutation responsible for sickle cell anemia by an RNA-DNA oligonucleotide. Science 1996; 273:1386-1389.

Treating Rheumatoid Arthritis With Herbs Spices Roots

Treating Rheumatoid Arthritis With Herbs Spices Roots

Did You Know That Herbs and Spices Have Been Used to Treat Rheumatoid Arthritis Successfully for Thousands of Years Do you suffer with rheumatoid arthritis Would you like to know which herbs and spices naturally reduce inflammation and pain 'Treating Rheumatoid Arthritis with Herbs, Spices and Roots' is a short report which shows you where to start.

Get My Free Ebook

Post a comment