References

Chemo Secrets From a Breast Cancer Survivor

Breast Cancer Survivors

Get Instant Access

1. Eberhard, A., Kahlert, S., Goede, V., Hemmerlein, B., Plate, K. H., Augustin, H. G. (2000). Heterogeneity of angiogenesis and blood vessel maturation in human tumors: implications for antiangio-genic tumor therapies. Cancer Res 60, 1388-1393.

2. Brown, J. M., and Giaccia, A. J. (1998). The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res 58, 1408-1416.

3. Vaupel, P., Kallinowski, F., and Okunieff, P. (1989). Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res 49, 6449-6465.

4. Wykoff, C. C., Pugh, C. W., Maxwell, P. H., Harris, A. L., Ratcliffe, P. J. (2000). Identification of novel hypoxia dependent and independent target genes of the von Hippel-Lindau (VHL)

tumour suppressor by mRNA differential expression profiling. Oncogene 19, 6297-6305.

5. Maxwell, P. H., Pugh, C. W., and Ratcliffe, P. J. (2001). Activation of the HIF pathway in cancer. Curr Opin Genet Dev 11, 293-299.

6. Plate, K. H., Breier, G., Weich, H. A., Risau, W. (1992). Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature 359, 845-848.

7. Shweiki, D., Itin, A., Soffer, D., Keshet, E. (1992). Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature. 359, 843-845.

8. Damert, A., Machein, M., Breier, G. et al. (1997). Up-regulation of vascular endothelial growth factor expression in a rat glioma is conferred by two distinct hypoxia-driven mechanisms. Cancer Res 57, 3860-3864.

9. Dachs, G. U., Patterson, A. V., Firth, J. D. et al. (1997). Targeting gene expression to hypoxic tumor cells. Nat Med 3, 515-520.

10. Zhong, H., De Marzo, A. M., Laughner, E. et al. (1999). Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases. Cancer Res 59, 5830-5835.

11. Talks, K. L., Turley, H., Gatter, K. C. et al. (2000). The expression and distribution of the hypoxia-inducible factors HIF-1alpha and HIF-2alpha in normal human tissues, cancers, and tumor-associated macrophages. Am J Pathol 157, 411-421.

12. Zagzag, D., Zhong, H., Scalzitti, J. M., Laughner, E., Simon, J. W., Semenza, G. L. (2000). Expression of hypoxia-inducible factor 1alpha in brain tumors: association with angiogenesis, invasion, and progression. Cancer 88, 2606-2618.

13. Plate, K. H. (1999). Mechanisms of angiogenesis in the brain. J Neuropathol Exp Neurol 58, 313-320.

14. Wang, G. L., Jiang, B. H., Rue, E. A., Semenza, G. L. (1995). Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci U S A 92, 5510-5514.

15. Wang, G. L., and Semenza, G. L. (1995). Purification and characterization of hypoxia-inducible factor 1. J Biol Chem 270, 1230-1237.

16. Ema, M., Taya, S., Yokotani, N., Sogawa, K., Matsuda, Y., Fujii-Kuriyama, Y. (1997). A novel bHLH-PAS factor with close sequence similarity to hypoxia-inducible factor 1alpha regulates the VEGF expression and is potentially involved in lung and vascular development. Proc Natl Acad Sci U S A 94, 4273-4278.

17. Flamme, I., Frohlich, T., von Reutern, M., Kappel, A., Damert, A., Risau, W. (1997). HRF, a putative basic helix-loop-helix-PAS-domain transcription factor is closely related to hypoxia-inducible factor-1 alpha and developmentally expressed in blood vessels. Mech Dev 63, 51-60.

18. Hogenesch, J. B., Chan, W. K., Jackiw, V. H. et al. (1997). Characterization of a subset of the basic-helix-loop-helix-PAS superfamily that interacts with components of the dioxin signaling pathway. J Biol Chem 272, 8581-8593.

19. Tian, H., McKnight, S. L., and Russell, D. W. (1997). Endothelial PAS domain protein 1 (EPAS1), a transcription factor selectively expressed in endothelial cells. Genes Dev 11, 72-82.

20. Gu, Y. Z., Moran, S. M., Hogenesch, J. B., Wartman, L., Bradfield, C. A. (1998). Molecular characterization and chromosomal localization of a third alpha-class hypoxia inducible factor subunit, HIF3alpha. Gene Expr 7, 205-213.

21. Wiesener, M. S., Turley, H., Allen, W. E. et al. (1998). Induction of endothelial PAS domain protein-1 by hypoxia: characterization and comparison with hypoxia-inducible factor-1alpha. Blood 92, 2260-2268.

22. Ema, M., Hirota, K., Mimura, J. et al. (1999). Molecular mechanisms of transcription activation by HLF and

HIFlalpha in response to hypoxia: their stabilization and redox signal-induced interaction with CBP/p300. EMBO J 18, 1905-1914.

23. O'Rourke, J. F., Tian, Y. M., Ratcliffe, P. J., Pugh, C. W. (1999). Oxygen-regulated and transactivating domains in endothelial PAS protein 1: comparison with hypoxia-inducible factor-1alpha. J Biol Chem 274, 2060-2071.

24. Salceda, S., and Caro, J. (1997). Hypoxia-inducible factor 1alpha (HIF-1alpha) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. J Biol Chem 272, 22642-22647.

25. Huang, L. E., Gu, J., Schau, M., Bunn, H. F. (1998). Regulation of hypoxia-inducible factor 1alpha is mediated by an O2- dependent degradation domain via the ubiquitin-protea-some pathway. Proc Natl Acad Sci U S A 95, 7987-7992.

26. Kallio, P. J., Wilson, W. J., O'Brien, S., Makino, Y., Poellinger, L. (1999). Regulation of the hypoxia-inducible transcription factor 1alpha by the ubiquitin-proteasome pathway. J Biol Chem. 274, 6519-6525.

27. Sutter, C. H., Laughner, E., and Semenza, G. L. (2000). Hypoxia-inducible factor 1alpha protein expression is controlled by oxygen-regulated ubiquitination that is disrupted by deletions and missense mutations. Proc Natl Acad Sci U S A 97, 4748-4753.

28. Jiang, B. H., Zheng, J. Z., Leung, S. W., Roe, R., Semenza, G. L. (1997). Transactivation and inhibitory domains of hypoxia-inducible factor 1alpha. Modulation of transcriptional activity by oxygen tension. J Biol Chem 272, 19253-19260.

29. Gu, J., Milligan, J., and Huang, L. E. (2001). Molecular mechanism of hypoxia-inducible factor 1alpha -p300 interaction. A leucine-rich interface regulated by a single cysteine. J Biol Chem 276, 3550-3554.

30. Pugh, C. W., O'Rourke, J. F., Nagao, M., Gleadle, J. M., Ratcliffe, P. J. (1997). Activation of hypoxia-inducible factor-1; definition of regulatory domains within the alpha subunit. J Biol Chem 272, 11205-11214.

31. Srinivas, V., Zhang, L. P., Zhu, X. H., Caro, J. (1999). Characterization of an oxygen/redox-dependent degradation domain of hypoxia-inducible factor alpha (HIF-alpha) proteins. Biochem Biophys Res Commun 260, 557-561.

32. Yu, F., White, S. B., Zhao, Q., Lee, F. S. (2001). Dynamic, site-specific interaction of hypoxia-inducible factor-1alpha with the von Hippel-Lindau tumor suppressor protein. Cancer Res 61, 4136-4142.

33. Lisztwan, J., Imbert, G., Wirbelauer, C., Gstaiger, M., Krek, W. (1999). The von Hippel-Lindau tumor suppressor protein is a component of an E3 ubiquitin-protein ligase activity. Genes Dev 13, 1822-1833.

34. Maxwell, P. H., Wiesener, M. S., Chang, G. W. et al. (1999). The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399, 271-275.

35. Stebbins, C. E., Kaelin W. G., Jr., and Pavletich, N. P. (1999). Structure of the VHL-ElonginC-ElonginB complex: implications for VHL tumor suppressor function. Science 284, 455-461.

36. Cockman, M. E., Masson, N., Mole, D. R. et al. (2000). Hypoxia inducible factor-alpha binding and ubiquitylation by the von Hippel-Lindau tumor suppressor protein. J Biol Chem 275, 25733-25741.

37. Ohh, M., Park, C. W., Ivan, M. et al. (2000). Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel-Lindau protein. Nat Cell Biol 2, 423-427.

38. Kamura, T., Sato, S., Iwai, K., Czyzyk-Krzeska, M., Conaway, R. C, Conaway, J. W. (2000). Activation of HIF1alpha ubiquitination by a reconstituted von Hippel- Lindau (VHL) tumor suppressor complex. Proc Natl Acad Sci U S A 97, 10430-10435.

39. Tanimoto, K., Makino, Y., Pereira, T., Poellinger, L. (2000). Mechanism of regulation of the hypoxia-inducible factor-1 alpha by the von Hippel-Lindau tumor suppressor protein. EMBO J 19, 4298-4309.

40. Ravi, R., Mookerjee, B., Bhujwalla, Z. M. et al. (2000). Regulation of tumor angiogenesis by p53-induced degradation of hypoxia-inducible factor 1alpha. Genes Dev 14, 34-44.

41. Blagosklonny, M. V., An, W. G., Romanova, L. Y., Trepel, J., Fojo, T., Neckers, L. (1998). p53 inhibits hypoxia-inducible factor-stimulated transcription. J Biol Chem 273, 11995-11998.

42. Epstein, A. C., Gleadle, J. M., McNeill, L. A. et al. (2001). C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107, 43-54.

43. Bruick, R. K., and McKnight, S. L. (2001). A conserved family of prolyl-4-hydroxylases that modify HIF. Science 294, 1337-1340.

44. Oehme, F., Ellinghaus, P., Kolkhof, P. et al. (2002). Overexpression of PH-4, a novel putative proline 4-hydroxylase, modulates activity of hypoxia-inducible transcription factors. Biochem Biophys Res Commun 296, 343-349.

45. Lando, D., Peet, D. J., Whelan, D. A., Gorman, J. J., Whitelaw, M. L. (2002). Asparagine hydroxylation of the HIF transactiva-tion domain a hypoxic switch. Science 295, 858-861.

46. Schofield, C. J., and Zhang, Z. (1999) Structural and mechanistic studies on 2-oxoglutarate-dependent oxygenases and related enzymes. Curr Opin Struct Biol. 9, 722-731.

47. Lando, D., Gorman, J. J., Whitelaw, M. L., Peet, D. J. (2003). Oxygen-dependent regulation of hypoxia-inducible factors by prolyl and asparaginyl hydroxylation. Eur J Biochem 270, 781-790.

48. Acker, T., and Acker, H. (2004). Cellular oxygen sensing need in CNS function: physiological and pathological implications. J Exp Biol 207, 3171-3188.

49. Semenza, G. L. (2000). Hypoxia, clonal selection, and the role of HIF-1 in tumor progression. Crit Rev Biochem Mol Biol 35, 71-103.

50. Acker, T., and Plate, K. H. (2002). A role for hypoxia and hypoxia-inducible transcription factors in tumor physiology. J Mol Med 80, 562-575.

51. Bilton, R. L., and Booker, G. W. (2003). The subtle side to hypoxia inducible factor (HIFalpha) regulation. Eur J Biochem 270, 791-798.

52. Jeong, J. W., Bae, M. K., Ahn, M. Y. et al. (2002). Regulation and destabilization of HIF-1alpha by ARD1-mediated acetylation. Cell 111, 709-720.

53. Carmeliet, P., and Jain, R. K. (2000). Angiogenesis in cancer and other diseases. Nature 407, 249-257.

54. Hanahan, D., and Folkman, J. (1996). Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86, 353-364.

55. Fox, S. B. (1997). Tumour angiogenesis and prognosis. Histopathology 30, 294-301.

56. Ferrara, N., and Davis-Smyth, T. (1997). The biology of vascular endothelial growth factor. Endocr Rev 18, 4-25.

57. Zetter, B. R. (1998). Angiogenesis and tumor metastasis. Annu Rev Med 49, 407-424.

58. Carmeliet, P. (2000). Mechanisms of angiogenesis and arteriogenesis. Nat Med 6, 389-395.

59. Yancopoulos, G. D., Davis, S., Gale, N. W., Rudge, J. S., Wiegand, S. J., Holash, J. (2000). Vascular-specific growth factors and blood vessel formation. Nature 407, 242-248.

60. Jansen, M., Witt Hamer, P. C., Witmer, A. N., Troost, D., van Noorden, C. J. (2004). Current perspectives on antiangiogenesis strategies in the treatment of malignant gliomas. Brain Res Brain Res Rev 45, 143-163.

61. Keck, P. J., Hauser, S. D., Krivi, G. et al. (1989). Vascular permeability factor, an endothelial cell mitogen related to PDGF. Science 246, 1309-1312.

62. Levy, A. P., Levy, N. S., and Goldberg, M. A. (1996). Hypoxia-inducible protein binding to vascular endothelial growth factor mRNA and its modulation by the von Hippel-Lindau protein. J Biol Chem 271, 25492-25497.

63. Liu, Y., Cox, S. R., Morita, T., Kourembanas, S. (1995). Hypoxia regulates vascular endothelial growth factor gene expression in endothelial cells. Identification of a 5/+enhancer. Circ Res 77, 638-643.

64. Forsythe, J. A., Jiang, B. H., Iyer, N. V. et al. (1996). Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol 16, 4604-4613.

65. Ikeda, E., Achen, M. G., Breier, G., Risau, W. (1995). Hypoxia-induced transcriptional activation and increased mRNA stability of vascular endothelial growth factor in C6 glioma cells. J Biol Chem 270, 19761-19766.

66. Stein, I., Neeman, M., Shweiki, D., Itin, A., Keshet, E. (1995). Stabilization of vascular endothelial growth factor mRNA by hypoxia and hypoglycemia and coregulation with other ischemia-induced genes. Mol Cell Biol 15, 5363-5368.

67. Levy, A. P, Levy, N. S., and Goldberg, M. A. (1996). Post-transcriptional regulation of vascular endothelial growth factor by hypoxia. J Biol Chem 271, 2746-2753.

68. Levy, N. S., Chung, S., Furneaux, H., Levy, A. P. (1998). Hypoxic stabilization of vascular endothelial growth factor mRNA by the RNA-binding protein HuR. J Biol Chem 273, 6417-6423.

69. Goldberg, I., Furneaux, H., and Levy, A. P. (2002). A 40bp RNA element that mediates stabilization of VEGF mRNA by HuR. J Biol Chem.

70. Shih, S. C., and Claffey, K. P. (1999). Regulation of human vascular endothelial growth factor mRNA stability in hypoxia by heterogeneous nuclear ribonucleoprotein L. J Biol Chem 274, 1359-1365.

71. Stein, I., Itin, A., Einat, P., Skaliter, R., Grossman, Z., Keshet, E. (1998). Translation of vascular endothelial growth factor mRNA by internal ribosome entry: implications for translation under hypoxia. Mol Cell Biol 18, 3112-3119.

72. Ozawa, K., Kondo, T., Hori, O. et al. (2000). Expression of the oxygen-regulated protein 0RP150 accelerates wound healing by modulating intracellular VEGF transport.

73. Grunstein, J., Masbad, J. J., Hickey, R., Giordano, F., Johnson. R. S. (1997). Isoforms of vascular endothelial growth factor act in a coordinate fashion to recruit and expand tumor vasculature. Mol Cell Biol 20, 7282-7291.

74. Kremer, C., Breier, G., Risau, W., Plate, K. H. (1997). Up-regulation of flk-1/vascular endothelial growth factor receptor 2 by its ligand in a cerebral slice culture system. Cancer Res 57, 3852-3859.

75. Roberts, W. G., and Palade, G. E. (1997). Neovasculature induced by vascular endothelial growth factor is fenestrated. Cancer Res 57, 765-772.

76. Kim, K. J., Li, B., Winer, J. et al. (1993). Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 362, 841-844.

77. Millauer, B., Shawver, L. K., Plate, K. H., Risau, W., Ullrich, A. (1994). Glioblastoma growth inhibited in vivo by a dominantnegative Flk-1 mutant. Nature 367, 576-579.

78. Strawn, L. M., McMahon, G., App, H. et al. (1996). Flk-1 as a target for tumor growth inhibition. Cancer Res 56, 3540-3545.

79. Folkman, J., Watson, K., Ingber, D., Hanahan, D. (1989). Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature 339, 58-61.

80. Inoue, M., Hager, J. H., Ferrara, N., Gerber, H. P., Hanahan, D. (2002). VEGF-A has a critical, nonredundant role in angio-genic switching and pancreatic beta cell carcinogenesis. Cancer Cell 1, 193-202.

81. Ferrara, N. (2002). VEGF and the quest for tumour angiogenesis factors. Nat Rev Cancer 2, 795-803.

82. Hiratsuka, S., Maru, Y., Okada, A., Seiki, M., Noda, T., Shibuya, M. (2001). Involvement of Flt-1 tyrosine kinase (vascular endothelial growth factor receptor-1) in pathological angiogenesis. Cancer Res 61, 1207-1213.

83. Carmeliet, P., Moons, L., Luttun, A. et al. (2001). Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat Med 7, 575-583.

84. Luttun, A., Tjwa, M., Moons, L. et al. (2002). Revascularization of ischemic tissues by PlGF treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by anti-Flt1. Nat Med 8, 831-840.

85. Hattori, K., Heissig, B., Wu, Y. et al. (2002). Placental growth factor reconstitutes hematopoiesis by recruiting VEGFR1(+) stem cells from bone-marrow microenvironment. Nat Med 8, 841-849.

86. Eriksson, U., and Alitalo, K. (2002). VEGF receptor 1 stimulates stem-cell recruitment and new hope for angiogen-esis therapies. Nat Med 8, 775-777.

87. Nomura, M., Yamagishi, S., Harada, S., Yamashima, T., Yamashita, J., Yamamoto, H. (1998). Placenta growth factor (PlGF) mRNA expression in brain tumors. J Neurooncol 40, 123-130.

88. Green, C. J., Lichtlen, P., Huynh, N. T. et al. (2001). Placenta growth factor gene expression is induced by hypoxia in fibroblasts: a central role for metal transcription factor-1. Cancer Res 61, 2696-2703.

89. Beck, H., Acker, T., Puschel, A. W., Fujisawa, H., Carmeliet, P., Plate, K. H. (2002). Cell type-specific expression of neuropilins in an MCA-occlusion model in mice suggests a potential role in post-ischemic brain remodeling. J Neuropathol Exp Neurol 61, 339-350.

90. Maisonpierre, P. C., Suri, C., Jones, P. F. et al. (1997). Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277, 55-60.

91. Beck, H., Acker, T., Wiessner, C., Allegrini, P. R., Plate, K. H. (2000). Expression of angiopoietin-1, angiopoietin-2, and tie receptors after middle cerebral artery occlusion in the rat. Am J Pathol 157, 1473-1483.

92. Acker, T, Beck, H., and Plate, K. H. (2001). Cell type specific expression of vascular endothelial growth factor and angiopoietin-1 and -2 suggests an important role of astrocytes in cerebellar vascularization. Mech Dev 108, 45-57.

93. Oh, H., Takagi, H., Suzuma, K., Otani, A., Matsumura, M., Honda, Y. (1999). Hypoxia and vascular endothelial growth factor selectively up-regulate angiopoietin-2 in bovine microvascular endothelial cells. J Biol Chem 274, 15732-15739.

94. Stratmann, A., Risau, W., and Plate, K. H. (1998). Cell type-specific expression of angiopoietin-1 and angiopoietin-2

suggests a role in glioblastoma angiogenesis. Am J Pathol 153, 1459-1466.

95. Stratmann, A., Acker, T., Burger, A. M., Amann, K., Risau, W., Plate, K. H. (2001). Differential inhibition of tumor angiogenesis by tie2 and vascular endothelial growth factor receptor-2 dominant-negative receptor mutants. Int J Cancer 91, 273-282.

96. Helmlinger, G., Yuan, F., Dellian, M., Jain, R. K. (1997). Interstitial pH and pO2 gradients in solid tumors in vivo: high- resolution measurements reveal a lack of correlation. Nat Med 3, 177-182.

97. Kimura, H., Braun, R. D., Ong, E. T. et al. (1996). Fluctuations in red cell flux in tumor microvessels can lead to transient hypoxia and reoxygenation in tumor parenchyma. Cancer Res 56, 5522-5528.

98. Hanahan, D. (1997). Signaling vascular morphogenesis and maintenance. Science 277, 48-50.

99. Lauren, J, Gunji, Y., and Alitalo, K. (1998). Is angiopoietin-2 necessary for the initiation of tumor angiogenesis? Am J Pathol 153, 1333-1339.

100. Thurston, G., Suri, C., Smith, K. et al. (1999). Leakage-resistant blood vessels in mice transgenically overexpressing angio-poietin-1. Science 286, 2511-2514.

101. Jain, R. K., and Munn, L. L. (2000). Leaky vessels? Call Ang1! Nat Med 6, 131-132.

102. Palmer, A., and Klein, R. (2003). Multiple roles of ephrins in morphogenesis, neuronal networking, and brain function. Genes Dev 17, 1429-1450.

103. Gerety, S. S., Wang, H. U., Chen, Z. F., Anderson, D. J. (1999). Symmetrical mutant phenotypes of the receptor EphB4 and its specific transmembrane ligand ephrin-B2 in cardiovascular development. Mol Cell 4, 403-414.

104. Adams, R. H., Wilkinson, G. A., Weiss, C. et al. (1999). Roles of ephrinB ligands and EphB receptors in cardiovascular development: demarcation of arterial/venous domains, vascular morphogenesis, and sprouting angiogenesis. Genes Dev 13, 295-306.

105. Wang, H. U., Chen, Z. F., and Anderson, D. J. (1998). Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell 93, 741-753.

106. Gerety, S. S., and Anderson, D. J. (2002). Cardiovascular ephrinB2 function is essential for embryonic angiogenesis. Development 129, 1397-1410.

107. Gale, N. W., Baluk, P., Pan, L. et al. (2001). Ephrin-B2 selectively marks arterial vessels and neovascularization sites in the adult, with expression in both endothelial and smooth-muscle cells. Dev Biol 230, 151-160.

108. Shin, D., Garcia-Cardena, G., Hayashi, S. et al. (2001). Expression of ephrinB2 identifies a stable genetic difference between arterial and venous vascular smooth muscle as well as endothelial cells, and marks subsets of microvessels at sites of adult neovascularization. Dev Biol 230, 139-150.

109. Ogawa, K., Pasqualini, R., Lindberg, R. A., Kain, R., Freeman, A. L., Pasquale, E. B. (2000). The ephrin-A1 ligand and its receptor, EphA2, are expressed during tumor neovasculariza-tion. Oncogene 19, 6043-6052.

110. Adams, R. H., Diella, F., Hennig, S., Helmbacher, F., Deutsch, U., Klein, R. (2001). The cytoplasmic domain of the ligand ephrinB2 is required for vascular morphogenesis but not cranial neural crest migration. Cell 104, 57-69.

111. Palmer, A., Zimmer, M., Erdmann, K. S. et al. (2002). EphrinB phosphorylation and reverse signaling: regulation by Src kinases and PTP-BL phosphatase. Mol Cell 9, 725-737.

112. Brantley, D. M., Cheng, N., Thompson, E. J. et al. (2002). Soluble Eph A receptors inhibit tumor angiogenesis and progression in vivo. Oncogene 21, 7011-7026.

113. Cheng, N., Brantley, D. M., Liu, H. et al. (2002). Blockade of EphA receptor tyrosine kinase activation inhibits vascular endothelial cell growth factor-induced angiogenesis. Mol Cancer Res 1, 2-11.

114. Mukouyama, Y. S., Shin, D., Britsch, S., Taniguchi, M., Anderson, D. J. (2002). Sensory nerves determine the pattern of arterial differentiation and blood vessel branching in the skin. Cell 109, 693-705.

115. Nakada, M., Niska, J. A., Miyamori, H. et al. (2004). The phosphorylation of EphB2 receptor regulates migration and invasion of human glioma cells. Cancer Res 64, 3179-3185.

116. Zelinski, D. P., Zantek, N. D., Stewart, J. C., Irizarry, A. R., Kinch, M. S. (2001). EphA2 overexpression causes tumorigen-esis of mammary epithelial cells. Cancer Res 61, 2301-2306.

117. Acker, T., and Plate, K. H. (2003). Role of hypoxia in tumor angiogenesis - molecular and cellular angiogenic crosstalk. Cell Tissue Res 80, 562-575.

118. Gerber, H. P., Condorelli, F., Park, J., Ferrara, N. (1997). Differential transcriptional regulation of the two vascular endothelial growth factor receptor genes. Flt-1, but not Flk-1/ KDR, is up-regulated by hypoxia. J Biol Chem. 272, 23659-23667.

119. Kappel, A., Ronicke, V., Damert, A., Flamme, I., Risau, W., Breier, G. (1999). Identification of vascular endothelial growth factor (VEGF) receptor-2 (Flk-1) promoter/enhancer sequences sufficient for angioblast and endothelial cell-specific transcription in transgenic mice. Blood 93, 4284-4292.

120. Favier, J., Kempf, H., Corvol, P., Gasc, J. M. (2001). Coexpres-sion of endothelial PAS protein 1 with essential angiogenic factors suggests its involvement in human vascular development. Dev Dyn 222, 377-388.

121. Elvert, G., Kappel, A., Heidenreich, R. et al. (2003). Cooperative interaction of hypoxia-inducible factor-2alpha (HIF-2alpha) and Ets-1 in the transcriptional activation of vascular endothelial growth factor receptor-2 (Flk-1). J Biol Chem 278, 7520-7530.

122. Li, J., Post, M., Volk, R. et al. (2000). PR39, a peptide regulator of angiogenesis. Nat Med 6, 49-55.

123. Helmlinger, G., Endo, M., Ferrara, N., Hlatky, L., Jain, R. K. (2000). Formation of endothelial cell networks. Nature 405, 139-141.

124. Ruoslahti, E. (2002). Specialization of tumour vasculature. Nat Rev Cancer 2, 83-90.

125. Ruoslahti, E. (2000). Targeting tumor vasculature with homing peptides from phage display. Semin Cancer Biol 10, 435-442.

126. St Croix, B., Rago, C., Velculescu, V. et al. (2000). Genes expressed in human tumor endothelium. Science 289, 1197-1202.

127. Matsumoto, K., Yoshitomi, H., Rossant, J., Zaret, K. S. (2001). Liver organogenesis promoted by endothelial cells prior to vascular function. Science 294, 559-563.

128. Lammert, E., Cleaver, O., and Melton, D. (2001). Induction of pancreatic differentiation by signals from blood vessels. Science 294, 564-567.

129. Wartenberg, M., Donmez, F., Ling, F. C., Acker, H., Hescheler, J., Sauer, H. (2001). Tumor-induced angiogenesis studied in confrontation cultures of multicellular tumor spheroids and embryoid bodies grown from pluripotent embryonic stem cells. FASEB J 15, 995-1005.

130. Rafii, S., Lyden, D., Benezra, R., Hattori, K., Heissig, B. (2002). Vascular and haematopoietic stem cells: novel targets for anti-angiogenesis therapy? Nat Rev Cancer 2, 826-835.

131. Coussens, L. M., and Werb, Z. (2002). Inflammation and cancer. Nature 420, 860-867.

132. Lin, E. Y., Nguyen, A. V., Russell, R. G. et al. (2001). Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J Exp Med 193, 727-740.

133. Takakura, N., Watanabe, T., Suenobu, S. et al. (2000). A role for hematopoietic stem cells in promoting angiogenesis. Cell 102, 199-209.

134. Lyden, D., Hattori, K., Dias, S. et al. (2001). Impaired recruitment of bone-marrow-derived endothelial and hema-topoietic precursor cells blocks tumor angiogenesis and growth. Nat Med 7, 1194-1201.

135. Fukumura, D., Xavier, R., Sugiura, T. et al. (1998). Tumor induction of VEGF promoter activity in stromal cells. Cell 94, 715-725.

136. Grimshaw, M. J., and Balkwill, F. R. (2001). Inhibition of monocyte and macrophage chemotaxis by hypoxia and inflammation-a potential mechanism. Eur J Immunol 31, 480-489.

137. Cramer, T., Yamanishi, Y., Clausen, B. E. et al. (2003). HIF-1alpha is essential for myeloid cell-mediated inflammation. Cell 112, 645-657.

138. Hiratsuka, S., Minowa, O., Kuno, J., Noda, T., Shibuya, M. (1998). Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice. Proc Natl Acad Sci U S A 95, 9349-9354.

139. Desbaillets, I., Diserens, A. C., de Tribolet, N., Hamou, M. F., Van Meir, E. G. (1999). Regulation of interleukin-8 expression by reduced oxygen pressure in human glioblastoma. Oncogene 18, 1447-1456.

140. Michiels, C., Arnould, T., and Remacle, J. (2000). Endothelial cell responses to hypoxia: initiation of a cascade of cellular interactions. Biochim Biophys Acta 1497, 1-10.

141. Holash, J., Maisonpierre, P. C., Compton, D. et al. (1999). Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284, 1994-1998.

142. Samoto, K., Ikezaki, K., Ono, M. et al. (1995). Expression of vascular endothelial growth factor and its possible relation with neovascularization in human brain tumors. Cancer Res 55, 1189-1193.

143. Lin, P., Polverini, P., Dewhirst, M., Shan, S., Rao, P. S., Peters, K. (1997). Inhibition of tumor angiogenesis using a soluble receptor establishes a role for Tie2 in pathologic vascular growth. J Clin Invest 100, 2072-2078.

144. Folkman, J. (2002). Role of angiogenesis in tumor growth and metastasis. Semin Oncol 29, 15-18.

145. Hansen-Algenstaedt, N., Stoll, B. R., Padera, T. P. et al. (2000). Tumor oxygenation in hormone-dependent tumors during vascular endothelial growth factor receptor-2 blockade, hormone ablation, and chemotherapy. Cancer Res 60, 4556-4560.

146. Lee, C. G., Heijn, M., di Tomaso, E. et al. (2000). AntiVascular endothelial growth factor treatment augments tumor radiation response under normoxic or hypoxic conditions. Cancer Res 60, 5565-5570.

147. Jain, R. K. (2001). Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med 7, 987-989.

148. Novak, K. (2002). Angiogenesis inhibitors revised and revived at AACR. American Association for Cancer Research. Nat Med 8, 427.

149. Newton, H. B. (2004). Molecular neuro-oncology and development of targeted therapeutic strategies for brain tumors. Part 2: PI3K/Akt/PTEN, mTOR, S. HH/PTCH and angiogenesis. Expert Rev Anticancer Ther 4, 105-128.

150. Dahut, W. L., Gulley, J. L., Arlen, P. M. et al. (2004). Randomized phase II trial of docetaxel plus thalidomide in androgen-independent prostate cancer. J Clin Oncol 22, 2532-2539.

151. Stadler, W. M., Kuzel, T., Shapiro, C., Sosman, J., Clark, J., Vogelzang, N. J. (1999). Multi-institutional study of the angiogenesis inhibitor TNP-470 in metastatic renal carcinoma. J Clin Oncol 17, 2541-2545.

152. Kerbel, R. S., Yu, J., Tran, J. et al. (2001). Possible mechanisms of acquired resistance to anti-angiogenic drugs: implications for the use of combination therapy approaches. Cancer Metastasis Rev 20, 79-86.

153. Kinzler, K. W., and Vogelstein, B. (1996). Life (and death) in a malignant tumour. Nature 379, 19-20.

154. Hanahan, D., and Weinberg, R. A. (2000). The hallmarks of cancer. Cell 100, 57-70.

155. Watanabe, K., Tachibana, O., Sata, K., Yonekawa, Y., Kleihues, P., Ohgaki, H. (1996). Overexpression of the EGF receptor and p53 mutations are mutually exclusive in the evolution of primary and secondary glioblastomas. Brain Pathol 6, 217-223.

156. Sidransky, D., Mikkelsen, T., Schwechheimer, K. et al. (1992). Clonal expansion of p53 mutant cells is associated with brain tumour progression. Nature 355, 846-847.

157. Reynolds, T. Y., Rockwell, S., and Glazer, P. M. (1996). Genetic instability induced by the tumor microenvironment. Cancer Res 56, 5754-5757.

158. Yuan, J., Narayanan, L., Rockwell, S. et al. (2000). Diminished DNA repair and elevated mutagenesis in mammalian cells exposed to hypoxia and low pH. Cancer Res 60, 4372-4376.

159. Giaccia, A. J. (1996). Hypoxic Stress Proteins: Survival of the Fittest. Semin Radiat Oncol 6, 46-58.

160. Graeber, T. G., Peterson, J. F., Tsai, M., Monica, K., Fornace, A. J., Jr., Giaccia, A. J. (1994). Hypoxia induces accumulation of p53 protein, but activation of a G1-phase checkpoint by low-oxygen conditions is independent of p53 status. Mol Cell Biol 14, 6264-6277.

161. Schmaltz, C., Hardenbergh, P. H., Wells, A., Fisher, D. E. (1998). Regulation of proliferation-survival decisions during tumor cell hypoxia. Mol Cell Biol 18, 2845-2854.

162. Graeber, T. G., Osmanian, C., Jacks, T. et al. (1996). Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 379, 88-91.

163. Yu, J. L., Rak, J. W., Coomber, B. L., Hicklin, D. J., Kerbel, R. S. (2002). Effect of p53 status on tumor response to antiangio-genic therapy. Science 295, 1526-1528.

164. Garcia-Barros, M., Paris, F., Cordon-Cardo, C. et al. (2003). Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science 300, 1155-1159.

165. Gorski, D. H., Beckett, M. A., Jaskowiak, N. T. et al. (1999). Blockage of the vascular endothelial growth factor stress response increases the antitumor effects of ionizing radiation. Cancer Res 59, 3374-3378.

166. Geng, L., Donnelly, E., McMahon, G. et al. (2001). Inhibition of vascular endothelial growth factor receptor signaling leads to reversal of tumor resistance to radiotherapy. Cancer Res 61, 2413-2419.

167. Hess, C., Vuong, V., Hegyi, I. et al. (2001). Effect of VEGF receptor inhibitor PTK787/ZK222584 [correction of ZK222548]

combined with ionizing radiation on endothelial cells and tumour growth. Br J Cancer 85, 2010-2016.

168. Tran, J., Master, Z., Yu, J. L., Rak, J., Dumont, D. J., Kerbel, R. S. (2002). A role for survivin in chemoresistance of endothelial cells mediated by VEGF. Proc Natl Acad Sci U S A 99, 4349-4354.

169. Edwards, E., Geng, L., Tan, J., Onishko, H., Donnelly, E., Hallahan, D. E. (2002). Phosphatidylinositol 3-kinase/Akt signaling in the response of vascular endothelium to ionizing radiation. Cancer Res 62, 4671-4677.

170. Brown, C. K., Khodarev, N. N., Yu, J. et al. (2004). Glioblastoma cells block radiation-induced programmed cell death of endothelial cells. FEBS Lett 565, 167-170.

171. Moeller, B. J., Cao, Y., Li, C. Y., Dewhirst, M. W. (2004). Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: role of reoxygenation, free radicals, and stress granules. Cancer Cell 5, 429-441.

172. Kerbel, R., and Folkman, J. (2002). Clinical translation of angiogenesis inhibitors. Nat Rev Cancer 2, 727-739.

173. Browder, T., Butterfield, C. E., Kraling, B. M. et al. (2000). Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res 60, 1878-1886.

174. Bocci, G., Nicolaou, K. C., and Kerbel, R. S. (2002). Protracted low-dose effects on human endothelial cell proliferation and survival in vitro reveal a selective antiangio-genic window for various chemotherapeutic drugs. Cancer Res 62, 6938-6943.

175. Griffiths, L., Binley, K., Iqball, S. et al. (2000). The macrophage -a novel system to deliver gene therapy to pathological hypoxia. Gene Ther 7, 255-262.

176. Maxwell, P. H., Dachs, G. U., Gleadle, J. M. et al. (1997). Hypoxia-inducible factor-1 modulates gene expression in solid tumors and influences both angiogenesis and tumor growth. Proc Natl Acad Sci U S A 94, 8104-8109.

177. Ryan, H. E., Lo, J., and Johnson, R. S. (1998). HIF-1 alpha is required for solid tumor formation and embryonic vascularization. EMBO J 17, 3005-3015.

178. Kung, A. L., Wang, S., Klco, J. M., Kaelin, W. G., Livingston, D. M. (2000). Suppression of tumor growth through disruption of hypoxia-inducible transcription. Nat Med 6, 1335-1340.

179. Kim, M. S., Kwon, H. J., Lee, Y. M. et al. (2001). Histone deacetylases induce angiogenesis by negative regulation of tumor suppressor genes. Nat Med 7, 437-443.

180. Carmeliet, P., Dor, Y., Herbert, J. M. et al. (1998). Role of HIF-1alpha in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 394, 485-490.

181. Blancher, C., Moore, J. W., Talks, K. L., Houlbrook, S., Harris, A. L. (2000). Relationship of hypoxia-inducible factor (HIF)-1alpha and HIF-2alpha expression to vascular endothelial growth factor induction and hypoxia survival in human breast cancer cell lines. Cancer Res 60, 7106-7113.

182. Oosthuyse, B., Moons, L., Storkebaum, E. et al. (2001). Deletion of the hypoxia-response element in the vascular endothelial growth factor promoter causes motor neuron degeneration. Nat Genet 28, 131-138.

Rheumatoid Arthritis Nfkb Nature Review
PLATE 15.1 (Fig. 15.1)

Was this article helpful?

0 0

Post a comment